1,441 research outputs found

    Atom galleries for whispering atoms: binding atoms in stable orbits around an optical resonator

    Get PDF
    The external fields of optical whispering gallery modes may be used to confine atoms in stable orbits around a dielectric microsphere. As an example, a toroidal dipole-force trap (atom gallery) for three-level atoms is investigated, and the possibility of achieving an atomic (matter-wave) resonator is discussed. The extremely small electromagnetic mode volumes and high Q's of the whispering gallery modes should permit a circulating photon to be repeatedly absorbed and reemitted by a trapped whispering atom

    Real-time detection of individual atoms falling through a high-finesse optical cavity

    Get PDF
    The enhanced coupling between atoms and photons inside a high-finesse optical cavity provides a novel basis for optical measurements that continuously monitor atomic degrees of freedom. We describe an experiment in which cavity quantum-electrodynamic effects are utilized for real-time detection of individual atoms falling through an optical cavity after being dropped from a magneto-optical trap. Our technique permits experiments that are triggered by the presence of a single optimally coupled atom within the cavity mode volume

    Quantum Trajectories for Realistic Detection

    Get PDF
    Quantum trajectories describe the stochastic evolution of an open quantum system conditioned on continuous monitoring of its output, such as by an ideal photodetector. Here we derive (non-Markovian) quantum trajectories for realistic photodetection, including the effects of efficiency, dead time, bandwidth, electronic noise, and dark counts. We apply our theory to a realistic cavity QED scenario and investigate the impact of such detector imperfections on the conditional evolution of the system state. A practical theory of quantum trajectories with realistic detection will be essential for experimental and technological applications of quantum feedback in many areas.Comment: 5 pages, 4 figures (3 .eps included, 1 jpeg as an additional file). To be published in Phys. Rev.

    Design of nanophotonic circuits for autonomous subsystem quantum error correction

    Full text link
    We reapply our approach to designing nanophotonic quantum memories to formulate an optical network that autonomously protects a single logical qubit against arbitrary single-qubit errors. Emulating the 9 qubit Bacon-Shor subsystem code, the network replaces the traditionally discrete syndrome measurement and correction steps by continuous, time-independent optical interactions and coherent feedback of unitarily processed optical fields.Comment: 12 pages, 4 figure

    Blue-light induced infrared absorption in KNbO3

    Get PDF
    We have used a high-finesse cavity to measure the cw intensity dependence and dynamics of blue-light-induced infrared absorption (BLIIRA) in KNbO3 crystals for blue-light intensities between 7 x 10^-4 and 2 x 10^4 W/cm^2. We discuss the detrimental effects of BLIIRA on the efficiency of intracavity frequency doubling and the threshold for parametric oscillation

    Full observation of single-atom dynamics in cavity QED

    Get PDF
    We report the use of broadband heterodyne spectroscopy to perform continuous measurement of the interaction energy between one atom and a high-finesse optical cavity, during individual transit events of ∼250\sim 250 μ\mus duration. Measurements over a wide range of atom-cavity detunings reveal the transition from resonant to dispersive coupling, via the transfer of atom-induced signals from the amplitude to the phase of light transmitted through the cavity. By suppressing all sources of excess technical noise, we approach a measurement regime in which the broadband photocurrent may be interpreted as a classical record of conditional quantum evolution in the sense of recently developed quantum trajectory theories.Comment: Submitted to Applied Physics B. Uses Revtex, 13 pages with 11 EPS figure

    Robust quantum parameter estimation: coherent magnetometry with feedback

    Get PDF
    We describe the formalism for optimally estimating and controlling both the state of a spin ensemble and a scalar magnetic field with information obtained from a continuous quantum limited measurement of the spin precession due to the field. The full quantum parameter estimation model is reduced to a simplified equivalent representation to which classical estimation and control theory is applied. We consider both the tracking of static and fluctuating fields in the transient and steady state regimes. By using feedback control, the field estimation can be made robust to uncertainty about the total spin number

    Retroactive quantum jumps in a strongly-coupled atom-field system

    Get PDF
    We investigate a novel type of conditional dynamic that occurs in the strongly-driven Jaynes-Cummings model with dissipation. Extending the work of Alsing and Carmichael [Quantum Opt. {\bf 3}, 13 (1991)], we present a combined numerical and analytic study of the Stochastic Master Equation that describes the system's conditional evolution when the cavity output is continuously observed via homodyne detection, but atomic spontaneous emission is not monitored at all. We find that quantum jumps of the atomic state are induced by its dynamical coupling to the optical field, in order retroactively to justify atypical fluctuations in ocurring in the homodyne photocurrent.Comment: 4 pages, uses RevTex, 5 EPS figure

    A sub-Doppler resolution double resonance molecular beam infrared spectrometer operating at chemically relevant energies (~2 eV)

    Get PDF
    A molecular beam spectrometer capable of achieving sub-Doppler resolution at 2 eV (~18 000 cm^–1) of vibrational excitation is described and its performance demonstrated using the CH stretch chromophore of HCN. Two high finesse resonant power-buildup cavities are used to excite the molecules using a sequential double resonance technique. A v = 0-->2 transition is first saturated using a 1.5 µm color center laser, whereupon a fraction of the molecules is further excited to the v = 6 level using an amplitude modulated Ti:Al2O3 laser. The energy absorbed by the molecules is detected downstream of both excitation points by a cryogenically cooled bolometer using phase sensitive detection. A resolution of approximately 15 MHz (i.e., three parts in 10^8) is demonstrated by recording a rotational line in the v = 6 manifold of HCN. Scan speeds of up to several cm^–1/h were obtained, with signal-to-noise ratios in excess of 100. The high signal-to-noise ratio and a dynamic range of 6×10^4 means that future experiments to study statistical intramolecular vibrational energy redistribution in small molecules and unimolecular isomerizations can be attempted. We would also like to point out that, with improved metrology in laser wavelengths, this instrument can also be used to provide improved secondary frequency standards based upon the rovibrational spectra of molecules
    • …
    corecore