5,858 research outputs found

    QCD Propagators at non-vanishing temperatures

    Full text link
    We investigate the behaviour of the gluon and ghost propagators, especially their infrared properties, at non-vanishing temperatures. To this end we solve their Dyson-Schwinger equations on a torus and find an infrared enhanced ghost propagator and an infrared vanishing gluon propagator.Comment: 2 pages, 2 figures; talk given by B.G. at the Erice summer school on Nuclear Physics, Sept. 16 -- 24, 2003, Erice, Ital

    Waves attractors in rotating fluids: a paradigm for ill-posed Cauchy problems

    Get PDF
    In the limit of low viscosity, we show that the amplitude of the modes of oscillation of a rotating fluid, namely inertial modes, concentrate along an attractor formed by a periodic orbit of characteristics of the underlying hyperbolic Poincar\'e equation. The dynamics of characteristics is used to elaborate a scenario for the asymptotic behaviour of the eigenmodes and eigenspectrum in the physically relevant r\'egime of very low viscosities which are out of reach numerically. This problem offers a canonical ill-posed Cauchy problem which has applications in other fields.Comment: 4 pages, 5 fi

    Temperature Dependence of Gluon and Ghost Propagators in Landau-Gauge Yang-Mills Theory below the Phase Transition

    Full text link
    The Dyson-Schwinger equations of Landau-gauge Yang-Mills theory for the gluon and ghost propagators are investigated. Numerical results are obtained within a truncation scheme which has proven to be successful at vanishing temperature. For temperatures up to 250 MeV we find only minor quantitative changes in the infrared behaviour of the gluon and ghost propagators. The effective action calculated from these propagators is temperature-independent within the numerical uncertainty.Comment: 9 pages, 14 figures, submitted to EPJ C, typos corrected, reference and 2 minor clarifications added, in v3: one paragraph extended, some references added, version to appear in EPJ

    Electromagnetic radiative corrections in parity-violating electron-proton scattering

    Full text link
    QED radiative corrections have been calculated for leptonic and hadronic variables in parity-violating elastic ep scattering. For the first time, the calculation of the asymmetry in the elastic radiative tail is performed without the peaking-approximation assumption in hadronic variables configuration. A comparison with the PV-A4 data validates our approach. This method has been also used to evaluate the radiative corrections to the parity-violating asymmetry measured in the G0 experiment. The results obtained are here presented.Comment: 12 pages, 11 figure

    First observational evidence of a North Madagascar Undercurrent

    Get PDF
    <i>In situ</i> observations reveal a southeastward-directed North Madagascar Undercurrent (NMUC) below and opposite to the equatorward-directed North Madagascar Current (NMC) off Cape Amber, at the northern tip of Madagascar. Results show an undercurrent hugging the continental slope with its core at 460 m depth and velocities over 0.7 m s-1. Its volume transport is estimated to be 3.1–3.8 Sv, depending on the velocity extrapolation methods used to fill in the data gaps near the slope (no-slip and full-slip, respectively). The thermohaline characteristics show a saltier and warmer NMUC, compared to the surrounding offshore waters, transporting mainly South Indian Central Water. Also, strong horizontal gradients of density are found in the NMUC domain. An inshore cell of coastal downwelling due to Ekman Transport toward the coast is identified, which can explain, at least in part, the strong baroclinic pressure gradients as well as the NMUC development and possible persistence

    Strange form factors and Chiral Perturbation Theory

    Full text link
    We review the contributions of Chiral Perturbation Theory to the theoretical understanding or not-quite-yet-understanding of the nucleon matrix elements of the strange vector current.Comment: 4 pages, 6 figures, presented at the International Workshop on Parity Violation and Hadronic Structure (PAVI04), Grenoble, France, 8-11 Jun 200

    Regulation and Restoration of Motoneuronal Synaptic Transmission During Neuromuscular Regeneration in the Pulmonate Snail Helisoma trivolvis

    Get PDF
    Regeneration of motor systems involves reestablishment of central control networks, reinnervation of muscle targets by motoneurons, and reconnection of neuromodulatory circuits. Still, how these processes are integrated as motor function is restored during regeneration remains ill defined. Here, we examined the mechanisms underlying motoneuronal regeneration of neuromuscular synapses related to feeding movements in the pulmonate snail Helisoma trivolvis. Neurons B19 and B110, although activated during different phases of the feeding pattern, innervate similar sets of muscles. However, the percentage of muscle fibers innervated, the efficacy of excitatory junction potentials, and the strength of muscle contractions were different for each cell’s specific connections. After peripheral nerve crush, a sequence of transient electrical and chemical connections formed centrally within the buccal ganglia. Neuromuscular synapse regeneration involved a three-phase process: the emergence of spontaneous synaptic transmission (P1), the acquisition of evoked potentials of weak efficacy (P2), and the establishment of functional reinnervation (P3). Differential synaptic efficacy at muscle contacts was recapitulated in cell culture. Differences in motoneuronal presynaptic properties (i.e., quantal content) were the basis of disparate neuromuscular synapse function, suggesting a role for retrograde target influences. We propose a homeostatic model of molluscan motor system regeneration. This model has three restoration events: (1) transient central synaptogenesis during axonal outgrowth, (2) intermotoneuronal inhibitory synaptogenesis during initial neuromuscular synapse formation, and (3) target-dependent regulation of neuromuscular junction formation

    Contribution of three rivers to floodplain and coastal productivity in the Gulf of Carpentaria: Finfish catch and growth

    Get PDF
    Barramundi were used as an indicator species for the effects of river flows on estuaries because they use a variety of aquatic habitats (marine to freshwater) and are an iconic fisheries species of significance in northern Australia. The Fisheries Queensland commercial catch logbook and monitoring data for length, age and reproductive data provide a long-term data series of this estuarine-dependent species in the Gulf of Carpentaria (GoC)

    "Wet-to-Dry" Conformational Transition of Polymer Layers Grafted to Nanoparticles in Nanocomposite

    Get PDF
    The present communication reports the first direct measurement of the conformation of a polymer corona grafted around silica nano-particles dispersed inside a nanocomposite, a matrix of the same polymer. This measurement constitutes an experimental breakthrough based on a refined combination of chemical synthesis, which permits to match the contribution of the neutron silica signal inside the composite, and the use of complementary scattering methods SANS and SAXS to extract the grafted polymer layer form factor from the inter-particles silica structure factor. The modelization of the signal of the grafted polymer on nanoparticles inside the matrix and the direct comparison with the form factor of the same particles in solution show a clear-cut change of the polymer conformation from bulk to the nanocomposite: a transition from a stretched and swollen form in solution to a Gaussian conformation in the matrix followed with a compression of a factor two of the grafted corona. In the probed range, increasing the interactions between the grafted particles (by increasing the particle volume fraction) or between the grafted and the free matrix chains (decreasing the grafted-free chain length ratio) does not influence the amplitude of the grafted brush compression. This is the first direct observation of the wet-to-dry conformational transition theoretically expected to minimize the free energy of swelling of grafted chains in interaction with free matrix chains, illustrating the competition between the mixing entropy of grafted and free chains, and the elastic deformation of the grafted chains. In addition to the experimental validation of the theoretical prediction, this result constitutes a new insight for the nderstanding of the general problem of dispersion of nanoparticles inside a polymer matrix for the design of new nanocomposites materials

    Chiral and deconfinement transition from correlation functions: SU(2) vs. SU(3)

    Full text link
    We study a gauge invariant order parameter for deconfinement and the chiral condensate in SU(2) and SU(3) Yang-Mills theory in the vicinity of the deconfinement phase transition using the Landau gauge quark and gluon propagators. We determine the gluon propagator from lattice calculations and the quark propagator from its Dyson-Schwinger equation, using the gluon propagator as input. The critical temperature and a deconfinement order parameter are extracted from the gluon propagator and from the dependency of the quark propagator on the temporal boundary conditions. The chiral transition is determined using the quark condensate as order parameter. We investigate whether and how a difference in the chiral and deconfinement transition between SU(2) and SU(3) is manifest.Comment: 15 pages, 9 figures. For clarification one paragraph and two references added in the introduction and two sentences at the end of the first and last paragraph of the summary. Appeared in EPJ
    • …
    corecore