64 research outputs found

    Proposal for the delineation of neoadjuvant target volumes in oesophageal cancer

    Get PDF
    PURPOSE: To define instructions for delineation of target volumes in the neoadjuvant setting in oesophageal cancer. MATERIALS AND METHODS: Radiation oncologists of five European centres participated in the following consensus process: [1] revision of published (MEDLINE) and national/institutional delineation guidelines; [2] first delineation round of five cases (patient 1-5) according to national/institutional guidelines; [3] consensus meeting to discuss the results of step 1 and 2, followed by a target volume delineation proposal; [4] circulation of proposed instructions for target volume delineation and atlas for feedback; [5] second delineation round of five new cases (patient 6-10) to peer review and validate (two additional centres) the agreed delineation guidelines and atlas; [6] final consensus on the delineation guidelines depicted in an atlas. Target volumes of the delineation rounds were compared between centres by Dice similarity coefficient (DSC) and maximum/mean undirected Hausdorff distances (Hmax/Hmean). RESULTS: In the first delineation round, the consistency between centres was moderate (CTVtotal: DSC = 0.59-0.88; Hmean = 0.2-0.4 cm). Delineations in the second round were much more consistent. Lowest variability was obtained between centres participating in the consensus meeting (CTVtotal: DSC: p < 0.050 between rounds for patients 6/7/8/10; Hmean: p < 0.050 for patients 7/8/10), compared to validation centres (CTVtotal: DSC: p < 0.050 between validation and consensus meeting centres for patients 6/7/8; Hmean: p < 0.050 for patients 7/10). A proposal for delineation of target volumes and an atlas were generated. CONCLUSION: We proposed instructions for target volume delineation and an atlas for the neoadjuvant radiation treatment in oesophageal cancer. These will enable a more uniform delineation of patients in clinical practice and clinical trials

    Effect of sitagliptin on energy metabolism and brown adipose tissue in overweight individuals with prediabetes:a randomised placebo-controlled trial

    Get PDF
    Aims/hypothesis: The aim of this study was to evaluate the effect of sitagliptin on glucose tolerance, plasma lipids, energy expenditure and metabolism of brown adipose tissue (BAT), white adipose tissue (WAT) and skeletal muscle in overweight individuals with prediabetes (impaired glucose tolerance and/or impaired fasting glucose). Methods: We performed a randomised, double-blinded, placebo-controlled trial in 30 overweight, Europid men (age 45.9 \xc2\xb1 6.2\xc2\xa0years; BMI 28.8 \xc2\xb1 2.3\xc2\xa0kg/m2) with prediabetes in the Leiden University Medical Center and the Alrijne Hospital between March 2015 and September 2016. Participants were initially randomly allocated to receive sitagliptin (100\xc2\xa0mg/day) (n = 15) or placebo (n = 15) for 12\xc2\xa0weeks, using a randomisation list that was set up by an unblinded pharmacist. All people involved in the study as well as participants were blinded to group assignment. Two participants withdrew from the study prior to completion (both in the sitagliptin group) and were subsequently replaced with two new participants that were allocated to the same treatment. Before and after treatment, fasting venous blood samples and skeletal muscle biopsies were obtained, OGTT was performed and body composition, resting energy expenditure and [18F] fluorodeoxyglucose ([18F]FDG) uptake by metabolic tissues were assessed. The primary study endpoint was the effect of sitagliptin on BAT volume and activity. Results: One participant from the sitagliptin group was excluded from analysis, due to a distribution error, leaving 29 participants for further analysis. Sitagliptin, but not placebo, lowered glucose excursion (\xe2\x88\x9240%; p < 0.003) during OGTT, accompanied by an improved insulinogenic index (+38%; p < 0.003) and oral disposition index (+44%; p < 0.003). In addition, sitagliptin lowered serum concentrations of triacylglycerol (\xe2\x88\x9229%) and very large (\xe2\x88\x9246%), large (\xe2\x88\x9235%) and medium-sized (\xe2\x88\x9224%) VLDL particles (all p < 0.05). Body weight, body composition and energy expenditure did not change. In skeletal muscle, sitagliptin increased mRNA expression of PGC1\xce\xb2 (also known as PPARGC1B) (+117%; p < 0.05), a main controller of mitochondrial oxidative energy metabolism. Although the primary endpoint of change in BAT volume and activity was not met, sitagliptin increased [18F] FDG uptake in subcutaneous WAT (sWAT; +53%; p < 0.05). Reported side effects were mild and transient and not necessarily related to the treatment. Conclusions/interpretation: Twelve weeks of sitagliptin in overweight, Europid men with prediabetes improves glucose tolerance and lipid metabolism, as related to increased [18F] FDG uptake by sWAT, rather than BAT, and upregulation of the mitochondrial gene PGC1\xce\xb2 in skeletal muscle. Studies on the effect of sitagliptin on preventing or delaying the progression of prediabetes into type 2 diabetes are warranted. Trial registration: ClinicalTrials.gov NCT02294084. Funding: This study was funded by Merck Sharp & Dohme Corp, Dutch Heart Foundation, Dutch Diabetes Research Foundation, Ministry of Economic Affairs and the University of Granada

    Treatment planning comparison in the PROTECT-trial randomising proton versus photon beam therapy in oesophageal cancer:Results from eight European centres

    Get PDF
    PURPOSE To compare dose distributions and robustness in treatment plans from eight European centres in preparation for the European randomized phase-III PROTECT-trial investigating the effect of proton therapy (PT) versus photon therapy (XT) for oesophageal cancer. MATERIALS AND METHODS All centres optimized one PT and one XT nominal plan using delineated 4DCT scans for four patients receiving 50.4 Gy (RBE) in 28 fractions. Target volume receiving 95% of prescribed dose (V95%iCTVtotal) should be >99%. Robustness towards setup, range, and respiration was evaluated. The plans were recalculated on a surveillance 4DCT (sCT) acquired at fraction ten and robustness evaluation was performed to evaluate the effect of respiration and inter-fractional anatomical changes. RESULTS All PT and XT plans complied with V95%iCTVtotal >99% for the nominal plan and V95%iCTVtotal >97% for all respiratory and robustness scenarios. Lung and heart dose varied considerably between centres for both modalities. The difference in mean lung dose and mean heart dose between each pair of XT and PT plans was in median [range] 4.8 Gy [1.1;7.6] and 8.4 Gy [1.9;24.5], respectively. Patients B and C showed large inter-fractional anatomical changes on sCT. For patient B, the minimum V95%iCTVtotal in the worst-case robustness scenario was 45% and 94% for XT and PT, respectively. For patient C, the minimum V95%iCTVtotal was 57% and 72% for XT and PT, respectively. Patient A and D showed minor inter-fractional changes and the minimum V95%iCTVtotal was >85%. CONCLUSION Large variability in dose to the lungs and heart was observed for both modalities. Inter-fractional anatomical changes led to larger target dose deterioration for XT than PT plans

    External validation of a prognostic model incorporating quantitative PET image features in esophageal cancer

    Get PDF
    Aim Enhanced prognostic models are required to improve risk stratification of patients with oesophageal cancer so treatment decisions can be optimised. The primary aim was to externally validate a published prognostic model incorporating PET image features. Transferability of the model was compared using only clinical variables. Methods This was a Transparent Reporting of a multivariate prediction model for Individual Prognosis Or Diagnosis (TRIPOD) type 3 study. The model was validated against patients treated with neoadjuvant chemoradiotherapy according to the Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS) trial regimen using pre- and post-harmonised image features. The Kaplan–Meier method with log-rank significance tests assessed risk strata discrimination. A Cox proportional hazards model assessed model calibration. Primary outcome was overall survival (OS). Results Between 2010 and 2015, 449 patients were included in the development (n = 302), internal validation (n = 101) and external validation (n = 46) cohorts. No statistically significant difference in OS between patient quartiles was demonstrated in prognostic models incorporating PET image features (X2 = 1.42, df = 3, p = 0.70) or exclusively clinical variables (age, disease stage and treatment; X2 = 1.19, df = 3, p = 0.75). The calibration slope β of both models was not significantly different from unity (p = 0.29 and 0.29, respectively). Risk groups defined using only clinical variables suggested differences in OS, although these were not statistically significant (X2 = 0.71, df = 2, p = 0.70). Conclusion The prognostic model did not enable significant discrimination between the validation risk groups, but a second model with exclusively clinical variables suggested some transferable prognostic ability. PET harmonisation did not significantly change the results of model validation

    European clinical practice guidelines for the definition, diagnosis, and treatment of oligometastatic esophagogastric cancer (OMEC-4)

    Get PDF
    Introduction: The OligoMetastatic Esophagogastric Cancer (OMEC) project aims to provide clinical practice guidelines for the definition, diagnosis, and treatment of esophagogastric oligometastatic disease (OMD). Methods: Guidelines were developed according to AGREE II and GRADE principles. Guidelines were based on a systematic review (OMEC-1), clinical case discussions (OMEC-2), and a Delphi consensus study (OMEC-3) by 49 European expert centers for esophagogastric cancer. OMEC identified patients for whom the term OMD is considered or could be considered. Disease-free interval (DFI) was defined as the time between primary tumor treatment and detection of OMD. Results: Moderate to high quality of evidence was found (i.e. 1 randomized and 4 non-randomized phase II trials) resulting in moderate recommendations. OMD is considered in esophagogastric cancer patients with 1 organ with ≤ 3 metastases or 1 involved extra-regional lymph node station. In addition, OMD continues to be considered in patients with OMD without progression in number of metastases after systemic therapy. 18F-FDG PET/CT imaging is recommended for baseline staging and for restaging after systemic therapy when local treatment is considered. For patients with synchronous OMD or metachronous OMD and a DFI ≤ 2 years, recommended treatment consists of systemic therapy followed by restaging to assess suitability for local treatment. For patients with metachronous OMD and DFI &gt; 2 years, upfront local treatment is additionally recommended. Discussion: These multidisciplinary European clinical practice guidelines for the uniform definition, diagnosis and treatment of esophagogastric OMD can be used to standardize inclusion criteria in future clinical trials and to reduce variation in treatment.</p

    Efficacy of dose-escalated chemoradiation on complete tumour response in patients with locally advanced rectal cancer (RECTAL-BOOST); a phase 2 randomised controlled trial

    Get PDF
    Purpose Pathological complete tumour response following chemoradiation in patients with locally advanced rectal cancer (LARC) is associated with favourable prognosis and allows organ-sparing treatment strategies. We aimed to investigate the effect of an external radiation boost to the tumour prior to chemoradiation on pathological or sustained clinical complete tumour response in LARC. Methods and materials This multicentre, non-blinded, phase 2, randomised controlled trial followed the trials within cohorts-design, which is a pragmatic trial design allowing cohort participants to be randomized for an experimental intervention. Patients in the intervention group are offered the intervention (and can accept or refuse this), whereas patients in the control group are not notified about the randomisation. Participants of a colorectal cancer cohort referred for chemoradiation of LARC to either of two radiotherapy centres were eligible. Patients were randomised to no boost or an external radiation boost (5 x 3 Gy) without concurrent chemotherapy directly followed by standard pelvic chemoradiation (25 x 2 Gy with concurrent capecitabine). The primary outcome was pathological complete response (pCR, i.e. ypT0N0) in patients with planned surgery at 12 weeks or, as surrogate for pCR, a 2-year sustained clinical complete response for patients treated with an organ preservation strategy. Analyses were intention to treat. The study was registered with ClinicalTrials.gov, number NCTXXXXXX. Results Between Sept 2014 and July 2018, 128 patients were randomised. Fifty-one of the 64 (79.7%) patients in the intervention group accepted and received a boost. Compared with the control group, fewer patients in the intervention group had a cT4-stage and a low rectal tumour (31.3% versus 17.2% and 56.3% versus 45.3% respectively), and more patients had a cN2-stage (59.4% versus 70.3% respectively). Rate of pathological or sustained clinical complete tumour response was similar between the groups: 23 of 64 (35.9%, 95%CI 24.3-48.9) in the intervention group versus 24 of 64 (37.5%, 95%CI 25.7-50.5) in the control group (OR=0.94 95%CI 0.46-1.92). Near-complete or complete tumour regression was more common in the intervention group: 34 of 49 (69.4%) versus 24 of 53 (45.3%) in the control group (OR=2.74, 95%CI 1.21-6.18). Grade >3 acute toxicity was comparable: 6 of 64 (9.4%) in the intervention group versus 5 of 64 (7.8%) in the control group (OR=1.22 95%CI 0.35-4.22). Conclusion Dose escalation with an external radiotherapy boost to the tumour prior to neoadjuvant chemoradiation did not increase the pathological or sustained clinical complete tumour response rate in LARC
    • …
    corecore