168,382 research outputs found
The structural, mechanical, electronic, optical and thermodynamic properties of t-XAs (X Si, Ge and Sn) by first-principles calculations
The structural, mechanical, electronic, optical and thermodynamic properties
of the t-XAs (X Si, Ge and Sn) with
tetragonal structure have been investigated by first principles calculations.
Our calculated results show that these compounds are mechanically and
dynamically stable. By the study of elastic anisotropy, it is found that the
anisotropic of the t-SnAs is stronger than that
of t-SiAs and
t-GeAs. The band structures and density of states
show that the t-XAs (Si, Ge and Sn) are
semiconductors with narrow band gaps. Based on the analyses of electron density
difference, in t-XAs As atoms get electrons, X
atoms lose electrons. The calculated static dielectric constants,
, are 15.5, 20.0 and 15.1 eV for
t-XAs (X Si, Ge and Sn), respectively. The
Dulong-Petit limit of t-XAs is about 10 J
molK. The thermodynamic stability successively
decreases from t-SiAs to
t-GeAs to t-SnAs.Comment: 14 pages, 10 figures, 6 table
Criticality and Continuity of Explosive Site Percolation in Random Networks
This Letter studies the critical point as well as the discontinuity of a
class of explosive site percolation in Erd\"{o}s and R\'{e}nyi (ER) random
network. The class of the percolation is implemented by introducing a best-of-m
rule. Two major results are found: i). For any specific , the critical
percolation point scales with the average degree of the network while its
exponent associated with is bounded by -1 and . ii).
Discontinuous percolation could occur on sparse networks if and only if
approaches infinite. These results not only generalize some conclusions of
ordinary percolation but also provide new insights to the network robustness.Comment: 5 pages, 5 figure
Isovector Giant Dipole Resonance of Stable Nuclei in a Consistent Relativistic Random Phase Approximation
A fully consistent relativistic random phase approximation is applied to
study the systematic behavior of the isovector giant dipole resonance of nuclei
along the -stability line in order to test the effective Lagrangians
recently developed. The centroid energies of response functions of the
isovector giant dipole resonance for stable nuclei are compared with the
corresponding experimental data and the good agreement is obtained. It is found
that the effective Lagrangian with an appropriate nuclear symmetry energy,
which can well describe the ground state properties of nuclei, could also
reproduce the isovector giant dipole resonance of nuclei along the
-stability line.Comment: 4 pages, 1 Postscript figure, to be submitted to Chin.Phys.Let
Influences of magnetic coupling process on the spectrum of a disk covered by the corona
Recently, much attention has been paid to the magnetic coupling (MC) process,
which is supported by very high emissivity indexes observed in Seyfert 1 galaxy
MCG-6-30-15 and GBHC XTE J1650-500. But the rotational energy transferred from
a black hole is simply assumed to be radiated away from the surrounding
accretion disk in black-body spectrum, which is obviously not consistent with
the observed hard power-law X-ray spectra. We intend to introduce corona into
the MC model to make it more compatible with the observations. We describe the
model and the procedure of a simplified Monte Carlo simulation, compare the
output spectra in the cases with and without the MC effects, and discuss the
influences of three parameters involved in the MC process on the output
spectra. It is shown that the MC process augments radiation fluxes in the UV or
X-ray band. The emergent spectrum is affected by the BH spin and magnetic field
strength at the BH horizon, while it is almost unaffected by the radial profile
of the magnetic field at the disk. Introducing corona into the MC model will
improve the fitting of the output spectra from AGNs and GBHCs.Comment: 15 pages, 5 figures, accepted by A&
- …