123,786 research outputs found

    Algebraic Structure of Discrete Zero Curvature Equations and Master Symmetries of Discrete Evolution Equations

    Full text link
    An algebraic structure related to discrete zero curvature equations is established. It is used to give an approach for generating master symmetries of first degree for systems of discrete evolution equations and an answer to why there exist such master symmetries. The key of the theory is to generate nonisospectral flows (λt=λl,l≥0)(\lambda_t=\lambda ^l, l\ge0) from the discrete spectral problem associated with a given system of discrete evolution equations. Three examples are given.Comment: 24 pages, LaTex, revise

    A multiple exp-function method for nonlinear differential equations and its application

    Full text link
    A multiple exp-function method to exact multiple wave solutions of nonlinear partial differential equations is proposed. The method is oriented towards ease of use and capability of computer algebra systems, and provides a direct and systematical solution procedure which generalizes Hirota's perturbation scheme. With help of Maple, an application of the approach to the 3+13+1 dimensional potential-Yu-Toda-Sasa-Fukuyama equation yields exact explicit 1-wave and 2-wave and 3-wave solutions, which include 1-soliton, 2-soliton and 3-soliton type solutions. Two cases with specific values of the involved parameters are plotted for each of 2-wave and 3-wave solutions.Comment: 12 pages, 16 figure

    Reexamining the "finite-size" effects in isobaric yield ratios using a statistical abrasion-ablation model

    Full text link
    The "finite-size" effects in the isobaric yield ratio (IYR), which are shown in the standard grand-canonical and canonical statistical ensembles (SGC/CSE) method, is claimed to prevent obtaining the actual values of physical parameters. The conclusion of SGC/CSE maybe questionable for neutron-rich nucleus induced reaction. To investigate whether the IYR has "finite-size" effects, the IYR for the mirror nuclei [IYR(m)] are reexamined using a modified statistical abrasion-ablation (SAA) model. It is found when the projectile is not so neutron-rich, the IYR(m) depends on the isospin of projectile, but the size dependence can not be excluded. In reactions induced by the very neutron-rich projectiles, contrary results to those of the SGC/CSE models are obtained, i.e., the dependence of the IYR(m) on the size and the isospin of the projectile is weakened and disappears both in the SAA and the experimental results.Comment: 5 pages and 4 figure
    • …
    corecore