95,262 research outputs found
Effect of carrot puree edible films on quality preservation of fresh-cut carrots
peer-reviewedFinancial support from the high level talent fund of Henan University of Technology Science and Technology (No. 2012BS024) is gratefully acknowledged.The effect of edible films based on carrot puree, chitosan, corn starch, gelatin, glycerol and cinnamaldehyde on fresh-cut carrots was studied during storage. Several parameters, such as firmness, colour, weight loss, total carotenoids, total phenols, polyphenol oxidase (PPO) activity and peroxidase (POD) activity in coated carrots were determined at regular intervals and then compared with the uncoated carrots throughout the storage period. Significant and expected changes were observed in all carrot samples that were compared. The coating treatment significantly (P < 0.05) delayed the senescence, reduced the deterioration of exterior quality and retained total carotenoids well compared with control (P < 0.05). In addition, significant inhibition of PPO activity (P < 0.05) and POD activity (P < 0.05) as well as reduced accumulation of polyphenols (P < 0.05) were observed for all coated samples. All of these favourable responses induced by coating treatment on minimally processed fresh-cut carrots showed beneficial physiological effects, which would give some useful references to the fresh-cut fruit and vegetable processing industry and satisfy people’s requirements allowing for extending product shelf life without negatively affecting the sensory quality or acceptability.Henan University of Technology Science and Technolog
Isovector Giant Dipole Resonance of Stable Nuclei in a Consistent Relativistic Random Phase Approximation
A fully consistent relativistic random phase approximation is applied to
study the systematic behavior of the isovector giant dipole resonance of nuclei
along the -stability line in order to test the effective Lagrangians
recently developed. The centroid energies of response functions of the
isovector giant dipole resonance for stable nuclei are compared with the
corresponding experimental data and the good agreement is obtained. It is found
that the effective Lagrangian with an appropriate nuclear symmetry energy,
which can well describe the ground state properties of nuclei, could also
reproduce the isovector giant dipole resonance of nuclei along the
-stability line.Comment: 4 pages, 1 Postscript figure, to be submitted to Chin.Phys.Let
Diagnosing space telescope misalignment and jitter using stellar images
Accurate knowledge of the telescope's point spread function (PSF) is
essential for the weak gravitational lensing measurements that hold great
promise for cosmological constraints. For space telescopes, the PSF may vary
with time due to thermal drifts in the telescope structure, and/or due to
jitter in the spacecraft pointing (ground-based telescopes have additional
sources of variation). We describe and simulate a procedure for using the
images of the stars in each exposure to determine the misalignment and jitter
parameters, and reconstruct the PSF at any point in that exposure's field of
view. The simulation uses the design of the SNAP (http://snap.lbl.gov)
telescope. Stellar-image data in a typical exposure determines secondary-mirror
positions as precisely as . The PSF ellipticities and size, which
are the quantities of interest for weak lensing are determined to and accuracies respectively in each exposure,
sufficient to meet weak-lensing requirements. We show that, for the case of a
space telescope, the PSF estimation errors scale inversely with the square root
of the total number of photons collected from all the usable stars in the
exposure.Comment: 20 pages, 6 figs, submitted to PAS
A Survey on Multisensor Fusion and Consensus Filtering for Sensor Networks
Multisensor fusion and consensus filtering are two fascinating subjects in the research of sensor networks. In this survey, we will cover both classic results and recent advances developed in these two topics. First, we recall some important results in the development ofmultisensor fusion technology. Particularly, we pay great attention to the fusion with unknown correlations, which ubiquitously exist in most of distributed filtering problems. Next, we give a systematic review on several widely used consensus filtering approaches. Furthermore, some latest progress on multisensor fusion and consensus filtering is also presented. Finally,
conclusions are drawn and several potential future research directions are outlined.the Royal Society of the UK, the National Natural Science Foundation of China under Grants 61329301, 61374039, 61304010, 11301118, and 61573246, the Hujiang Foundation of China under Grants C14002
and D15009, the Alexander von Humboldt Foundation of Germany, and the Innovation Fund Project for Graduate Student of Shanghai under Grant JWCXSL140
Levinson's theorem for the Schr\"{o}dinger equation in two dimensions
Levinson's theorem for the Schr\"{o}dinger equation with a cylindrically
symmetric potential in two dimensions is re-established by the Sturm-Liouville
theorem. The critical case, where the Schr\"{o}dinger equation has a finite
zero-energy solution, is analyzed in detail. It is shown that, in comparison
with Levinson's theorem in non-critical case, the half bound state for
wave, in which the wave function for the zero-energy solution does not decay
fast enough at infinity to be square integrable, will cause the phase shift of
wave at zero energy to increase an additional .Comment: Latex 11 pages, no figure and accepted by P.R.A (in August); Email:
[email protected], [email protected]
Nonlinear Dynamics in the Resonance Lineshape of NbN Superconducting Resonators
In this work we report on unusual nonlinear dynamics measured in the
resonance response of NbN superconducting microwave resonators. The nonlinear
dynamics, occurring at relatively low input powers (2-4 orders of magnitude
lower than Nb), and which include among others, jumps in the resonance
lineshape, hysteresis loops changing direction and resonance frequency shift,
are measured herein using varying input power, applied magnetic field, white
noise and rapid frequency sweeps. Based on these measurement results, we
consider a hypothesis according to which local heating of weak links forming at
the boundaries of the NbN grains are responsible for the observed behavior, and
we show that most of the experimental results are qualitatively consistent with
such hypothesis.Comment: Updated version (of cond-mat/0504582), 16 figure
A model of rotating hotspots for 3:2 frequency ratio of HFQPOs in black hole X-ray binaries
We propose a model to explain a puzzling 3:2 frequency ratio of high
frequency quasi-periodic oscillations (HFQPOs) in black hole (BH) X-ray
binaries, GRO J1655-40, GRS 1915+105 and XTE J1550-564. In our model a
non-axisymmetric magnetic coupling (MC) of a rotating black hole (BH) with its
surrounding accretion disc coexists with the Blandford-Znajek (BZ) process. The
upper frequency is fitted by a rotating hotspot near the inner edge of the
disc, which is produced by the energy transferred from the BH to the disc, and
the lower frequency is fitted by another rotating hotspot somewhere away from
the inner edge of the disc, which arises from the screw instability of the
magnetic field on the disc. It turns out that the 3:2 frequency ratio of HFQPOs
in these X-ray binaries could be well fitted to the observational data with a
much narrower range of the BH spin. In addition, the spectral properties of
HFQPOs are discussed. The correlation of HFQPOs with jets from microquasars is
contained naturally in our model.Comment: 8 pages, 4 figures. accepted by MNRA
- …