215,025 research outputs found

    QCD Factorization for Quarkonium Production in Hadron Collions at Low Transverse Momentum

    Full text link
    Inclusive production of a quarkonium ηc,b\eta_{c,b} in hadron collisions at low transverse momentum can be used to extract various Transverse-Momentum-Dependent(TMD) gluon distributions of hadrons, provided the TMD factorization for the process holds. The factorization involving unpolarized TMD gluon distributions of unpolarized hadrons has been examined with on-shell gluons at one-loop level. In this work we study the factorization at one-loop level with diagram approach in the most general case, where all TMD gluon distributions at leading twist are involved. We find that the factorization holds and the perturbative effects are represented by one perturbative coefficient. Since the initial gluons from hadrons are off-shell in general, there exists the so-called super-leading region found recently. We find that the contributions from this region can come from individual diagrams at one-loop level, but they are cancelled in the sum. Our factorized result for the differential cross-section is explicitly gauge-invariant.Comment: discussions and references are added. Published version on Phys. Rev.

    Quantum sensing of rotation velocity based on transverse field Ising model

    Full text link
    We study a transverse-field Ising model (TFIM) in a rotational reference frame. We find that the effective Hamiltonian of the TFIM of this system depends on the system's rotation velocity. Since the rotation contributes an additional transverse field, the dynamics of TFIM sensitively responses to the rotation velocity at the critical point of quantum phase transition. This observation means that the TFIM can be used for quantum sensing of rotation velocity that can sensitively detect rotation velocity of the total system at the critical point. It is found that the resolution of the quantum sensing scheme we proposed is characterized by the half-width of Loschmidt echo of the dynamics of TFIM when it couples to a quantum system S. And the resolution of this quantum sensing scheme is proportional to the coupling strength \delta between the quantum system S and the TFIM, and to the square root of the number of spins N belonging the TFIM.Comment: 6 pages,6 figure

    Numerical framework for transcritical real-fluid reacting flow simulations using the flamelet progress variable approach

    Full text link
    An extension to the classical FPV model is developed for transcritical real-fluid combustion simulations in the context of finite volume, fully compressible, explicit solvers. A double-flux model is developed for transcritical flows to eliminate the spurious pressure oscillations. A hybrid scheme with entropy-stable flux correction is formulated to robustly represent large density ratios. The thermodynamics for ideal-gas values is modeled by a linearized specific heat ratio model. Parameters needed for the cubic EoS are pre-tabulated for the evaluation of departure functions and a quadratic expression is used to recover the attraction parameter. The novelty of the proposed approach lies in the ability to account for pressure and temperature variations from the baseline table. Cryogenic LOX/GH2 mixing and reacting cases are performed to demonstrate the capability of the proposed approach in multidimensional simulations. The proposed combustion model and numerical schemes are directly applicable for LES simulations of real applications under transcritical conditions.Comment: 55th AIAA Aerospace Sciences Meeting, Dallas, T

    A Study of Gluon Propagator on Coarse Lattice

    Get PDF
    We study gluon propagator in Landau gauge with lattice QCD, where we use an improved lattice action. The calculation of gluon propagator is performed on lattices with the lattice spacing from 0.40 fm to 0.24 fm and with the lattice volume from (2.40fm)4(2.40 fm)^4 to (4.0fm)4(4.0 fm)^4. We try to fit our results by two different ways, in the first one we interpret the calculated gluon propagators as a function of the continuum momentum, while in the second we interpret the propagators as a function of the lattice momentum. In the both we use models which are the same in continuum limit. A qualitative agreement between two fittings is found.Comment: Revtex 14pages, 11 figure

    Transverse-Momentum Dependent Factorization for gamma^* pi^0 to gamma

    Full text link
    With a consistent definition of transverse-momentum dependent (TMD) light-cone wave function, we show that the amplitude for the process γπ0γ\gamma^* \pi^0 \to\gamma can be factorized when the virtuality of the initial photon is large. In contrast to the collinear factorization in which the amplitude is factorized as a convolution of the standard light-cone wave function and a hard part, the TMD factorization yields a convolution of a TMD light-cone wave function, a soft factor and a hard part. We explicitly show that the TMD factorization holds at one loop level. It is expected that the factorization holds beyond one-loop level because the cancelation of soft divergences is on a diagram-by-diagram basis. We also show that the TMD factorization helps to resum large logarithms of type ln2x\ln^2x.Comment: Published version in Phys.Rev.D75:014014,200

    Gluon GPDs and Exclusive Photoproduction of a Quarkonium in Forward Region

    Full text link
    Forward photoproduction of J/ψJ/\psi can be used to extract Generalized Parton Distributions(GPD's) of gluons. We analyze the process at twist-3 level and study relevant classifications of twist-3 gluon GPD's. At leading power or twist-2 level the produced J/ψJ/\psi is transversely polarized. We find that at twist-3 the produced J/ψJ/\psi is longitudinally polarized. Our study shows that in high energy limit the twist-3 amplitude is only suppressed by the inverse power of the heavy quark mass relatively to the twist-2 amplitude. This indicates that the power correction to the cross-section of unpolarized J/ψJ/\psi can have a sizeable effect. We have also derived the amplitude of the production of hch_c at twist-3, but the result contains end-point singularities. The production of other quarkonia has been briefly discussed.Comment: Discussions of results are adde

    Shifting RbR_b with AFBbA^b_{FB}

    Get PDF
    Precision measurements at the ZZ resonance agree well with the standard model. However, there is still a hint of a discrepancy, not so much in RbR_b by itself (which has received a great deal of attention in the past several years) but in the forward-backward asymmetry AFBbA^b_{FB} together with RbR_b. The two are of course correlated. We explore the possibilty that these and other effects are due to the mixing of bLb_L and bRb_R with one or more heavy quarks.Comment: 11 pages, 1 Figure, LaTex fil
    corecore