8 research outputs found

    Potential of herbariomics for studying repetitive DNA in angiosperms

    Get PDF
    Repetitive DNA has an important role in angiosperm genomes and is relevant to our understanding of genome size variation, polyploidisation and genome dynamics more broadly. Much recent work has harnessed the power of high-throughput sequencing (HTS) technologies to advance the study of repetitive DNA in flowering plants. Herbarium collections provide a useful historical perspective on genome diversity through time, but their value for the study of repetitive DNA has not yet been explored. We propose that herbarium DNA may prove as useful for studies of repetitive DNA content as it has for reconstructed organellar genomes and low-copy nuclear sequence data. Here we present a case study in the tobacco genus (Nicotiana; Solanaceae), showing that herbarium specimens can provide accurate estimates of the repetitive content of angiosperm genomes by direct comparison with recently-collected material. We show a strong correlation between the abundance of repeat clusters, e.g., different types of transposable elements and satellite DNA, in herbarium collections versus recent material for four sets of Nicotiana taxa. These results suggest that herbarium specimen genome sequencing (herbariomics) holds promise for both repeat discovery and analyses that aim to investigate the role of repetitive DNAs in genomic evolution, particularly genome size evolution and/or contributions of repeats to the regulation of gene space

    The ecology of palm genomes: repeat-associated genome size expansion is constrained by aridity

    Get PDF
    Genome size varies 2400-fold across plants, influencing their evolution through changes in cell size and cell division rates which impact plants' environmental stress tolerance. Repetitive element expansion explains much genome size diversity, and the processes structuring repeat "communities" are analogous to those structuring ecological communities. However, which environmental stressors influence repeat community dynamics has not yet been examined from an ecological perspective. We measured genome size and leveraged climatic data for 91% of genera within the ecologically diverse palm family (Arecaceae). We then generated genomic repeat profiles for 141 palm species, and analysed repeats using phylogenetically informed linear models to explore relationships between repeat dynamics and environmental factors. We show that palm genome size and repeat "community" composition are best explained by aridity. Specifically, Ty3-gypsy and TIR elements were more abundant in palm species from wetter environments, which generally had larger genomes, suggesting amplification. By contrast, Ty1-copia and LINE elements were more abundant in drier environments. Our results suggest that water stress inhibits repeat expansion through selection on upper genome size limits. However, elements that may associate with stress-response genes (e.g. Ty1-copia) have amplified in arid-adapted palm species. Overall, we provide novel evidence of climate influencing the assembly of repeat "communities".JP was supported by a Ramón y Cajal Fellowship (RYC-2017-2274) funded by MCIN/AEI/10.13039/501100011033 and by ‘ESF Investing in your future’. SB was funded by a Garfield Weston Foundation postdoctoral fellowship. PN and JM were supported by the ELIXIR CZ Research Infrastructure Project (Czech Ministry of Education, Youth and Sports; grant no. LM2018131).IntroductionMaterials and Methods Plant material collection and genome size measurement Phylogenetic, environmental and genomic data collection Modelling relationships between genome size and environmental variables DNA repeat profiling Assessing repeat dynamics in palm genomesResults Palm genome size variation Aridity preferences of palm species help explain genome size variation Ecological metrics of palm repeat ‘communities’ vary with genome size Repeat abundances correlate with genome size Aridity preferences of palm species explain abundances of certain repeat lineagesDiscussion Palm genome size variation Aridity thresholds best explain palm genome size diversity The ‘community ecology’ of repeats correlates with genome size Repeat dynamics may be modulated by aridityConclusionsAcknowledgementsAuthor contributionsPeer reviewe

    Правда коммунизма. 1973. № 067

    Get PDF
    Angiosperm genome sizes (GS) vary c. 2,400-fold. Recent research has shown that GS influences plant abundance, and plant competition. There are also tantalising reports that herbivores may select plants as food dependent on their GS. To test the hypothesis that GS plays a role in shaping plant communities under herbivore pressure, we exploit a grassland experiment that has experimentally excluded herbivores and applied nutrient over 8 years. Using phylogenetically-informed statistical models and path analyses, we show that under rabbit-grazing, plant species with small GS generated the most biomass. In contrast, on mollusc and insect-grazed plots, it was the plant species with larger GS that increased in biomass. GS was also shown to influence plant community properties (e.g. competitive strategy, total biomass) although the impact varied between different herbivore guilds (i.e. rabbits versus invertebrates) and nutrient inputs. Overall, we demonstrate that GS plays a role in influencing plant-herbivore interactions, and suggest potential reasons for this response, which include the impact of GS on a plant’s response to different herbivore guilds, and on a plant’s nutrient quality. The inclusion of GS in ecological models has the potential to expand our understanding of plant productivity and community ecology under nutrient and herbivore stress

    Extensive plastid-nuclear discordance in a recent radiation of Nicotiana section Suaveolentes (Solanaceae)

    No full text
    Nicotiana section Suaveolentes is the largest section of Nicotiana and is a monophyletic group of allotetraploid species. Most of the species are endemic to Australia, but three species occur on islands in the South Pacific as far east as French Polynesia and one species is native to Namibia. Here, we present phylogenetic results based on genome skimming, with near-complete taxon sampling and multiple accessions sampled for several species. These represent the first phylogenetic results for the section that include most recognized taxa, using wild-sourced material wherever possible. Despite known chromosome number and genome size changes in the section, there is little divergence in the ribosomal DNA operon (26S, 18.S and 5.8S plus associated spacers) and plastid genomes, with little to no taxonomic signal in plastome phylogenetic results and clear plastid-nuclear discordance. These results contrast with strong morphological differentiation (both floral and vegetative) between most of the core Australian taxa and obvious differences in ecological preferences. Together, these initial results portray Nicotiana section Suaveolentes as experiencing recent and ongoing radiation in the arid zone of Australia
    corecore