750 research outputs found

    Stability manifolds of Kuznetsov components of prime Fano threefolds

    Full text link
    Let XX be a cubic threefold, quartic double solid or Gushel--Mukai threefold, and Ku(X)⊂Db(X)\mathcal{K}u(X)\subset \mathrm{D}^b(X) be its Kuznetsov component. We show that a stability condition σ\sigma on Ku(X)\mathcal{K}u(X) is Serre-invariant if and only if its homological dimension is at most 22. As a corollary, we prove that all Serre-invariant stability conditions on Ku(X)\mathcal{K}u(X) form a contractible connected component of the stability manifold.Comment: 19 pages, comments are very welcome

    Space-Time Fresnel Prism

    Full text link
    Space-time modulation-based metamaterials have recently spurred considerable interest, owing to the fundamental addition of the time dimension to the medium parameters, and resulting novel properties and potential applications. However, the implementation of most related structures -- e.g., involving step, slab or gradient discontinuities -- has been hindered by the impossible requirement of infinitely or prohibitively large device sizes. We provide here a solution to this issue, consisting in a space-time transposition of the conventional Fresnel prism, whereby a copy of the target modulation is periodically re-injected at the input of a Fresnel-reduced finite structure, so as to provide the same anharmonic and nonreciprocal frequency conversion as the target space-time interface in the case of a modulation step. This concept, which may readily extend to slab or gradient modulations, as well as accelerated profiles for space-time chirping operations, may pave the way for the practical development of a wide range of novel microwave and optical space-time systems

    PHE-SICH-CT-IDS: A Benchmark CT Image Dataset for Evaluation Semantic Segmentation, Object Detection and Radiomic Feature Extraction of Perihematomal Edema in Spontaneous Intracerebral Hemorrhage

    Full text link
    Intracerebral hemorrhage is one of the diseases with the highest mortality and poorest prognosis worldwide. Spontaneous intracerebral hemorrhage (SICH) typically presents acutely, prompt and expedited radiological examination is crucial for diagnosis, localization, and quantification of the hemorrhage. Early detection and accurate segmentation of perihematomal edema (PHE) play a critical role in guiding appropriate clinical intervention and enhancing patient prognosis. However, the progress and assessment of computer-aided diagnostic methods for PHE segmentation and detection face challenges due to the scarcity of publicly accessible brain CT image datasets. This study establishes a publicly available CT dataset named PHE-SICH-CT-IDS for perihematomal edema in spontaneous intracerebral hemorrhage. The dataset comprises 120 brain CT scans and 7,022 CT images, along with corresponding medical information of the patients. To demonstrate its effectiveness, classical algorithms for semantic segmentation, object detection, and radiomic feature extraction are evaluated. The experimental results confirm the suitability of PHE-SICH-CT-IDS for assessing the performance of segmentation, detection and radiomic feature extraction methods. To the best of our knowledge, this is the first publicly available dataset for PHE in SICH, comprising various data formats suitable for applications across diverse medical scenarios. We believe that PHE-SICH-CT-IDS will allure researchers to explore novel algorithms, providing valuable support for clinicians and patients in the clinical setting. PHE-SICH-CT-IDS is freely published for non-commercial purpose at: https://figshare.com/articles/dataset/PHE-SICH-CT-IDS/23957937

    ConvFinQA: Exploring the Chain of Numerical Reasoning in Conversational Finance Question Answering

    Full text link
    With the recent advance in large pre-trained language models, researchers have achieved record performances in NLP tasks that mostly focus on language pattern matching. The community is experiencing the shift of the challenge from how to model language to the imitation of complex reasoning abilities like human beings. In this work, we investigate the application domain of finance that involves real-world, complex numerical reasoning. We propose a new large-scale dataset, ConvFinQA, aiming to study the chain of numerical reasoning in conversational question answering. Our dataset poses great challenge in modeling long-range, complex numerical reasoning paths in real-world conversations. We conduct comprehensive experiments and analyses with both the neural symbolic methods and the prompting-based methods, to provide insights into the reasoning mechanisms of these two divisions. We believe our new dataset should serve as a valuable resource to push forward the exploration of real-world, complex reasoning tasks as the next research focus. Our dataset and code is publicly available at https://github.com/czyssrs/ConvFinQA.Comment: EMNLP 202

    ECPC-IDS:A benchmark endometrail cancer PET/CT image dataset for evaluation of semantic segmentation and detection of hypermetabolic regions

    Full text link
    Endometrial cancer is one of the most common tumors in the female reproductive system and is the third most common gynecological malignancy that causes death after ovarian and cervical cancer. Early diagnosis can significantly improve the 5-year survival rate of patients. With the development of artificial intelligence, computer-assisted diagnosis plays an increasingly important role in improving the accuracy and objectivity of diagnosis, as well as reducing the workload of doctors. However, the absence of publicly available endometrial cancer image datasets restricts the application of computer-assisted diagnostic techniques.In this paper, a publicly available Endometrial Cancer PET/CT Image Dataset for Evaluation of Semantic Segmentation and Detection of Hypermetabolic Regions (ECPC-IDS) are published. Specifically, the segmentation section includes PET and CT images, with a total of 7159 images in multiple formats. In order to prove the effectiveness of segmentation methods on ECPC-IDS, five classical deep learning semantic segmentation methods are selected to test the image segmentation task. The object detection section also includes PET and CT images, with a total of 3579 images and XML files with annotation information. Six deep learning methods are selected for experiments on the detection task.This study conduct extensive experiments using deep learning-based semantic segmentation and object detection methods to demonstrate the differences between various methods on ECPC-IDS. As far as we know, this is the first publicly available dataset of endometrial cancer with a large number of multiple images, including a large amount of information required for image and target detection. ECPC-IDS can aid researchers in exploring new algorithms to enhance computer-assisted technology, benefiting both clinical doctors and patients greatly.Comment: 14 pages,6 figure
    • …
    corecore