2,304 research outputs found
Semi-global leader-following consensus of linear multi-agent systems with input saturation via low gain feedback
published_or_final_versio
A topological insulator surface under strong Coulomb, magnetic and disorder perturbations
Three dimensional topological insulators embody a newly discovered state of
matter characterized by conducting spin-momentum locked surface states that
span the bulk band gap as demonstrated via spin-resolved ARPES measurements .
This highly unusual surface environment provides a rich ground for the
discovery of novel physical phenomena. Here we present the first controlled
study of the topological insulator surfaces under strong Coulomb, magnetic and
disorder perturbations. We have used interaction of iron, with a large Coulomb
state and significant magnetic moment as a probe to \textit{systematically test
the robustness} of the topological surface states of the model topological
insulator BiSe. We observe that strong perturbation leads to the
creation of odd multiples of Dirac fermions and that magnetic interactions
break time reversal symmetry in the presence of band hybridization. We also
present a theoretical model to account for the altered surface of BiSe.
Taken collectively, these results are a critical guide in manipulating
topological surfaces for probing fundamental physics or developing device
applications.Comment: 14 pages, 4 Figures. arXiv admin note: substantial text overlap with
arXiv:1009.621
Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice
Dirac points lie at the heart of many fascinating phenomena in condensed
matter physics, from massless electrons in graphene to the emergence of
conducting edge states in topological insulators [1, 2]. At a Dirac point, two
energy bands intersect linearly and the particles behave as relativistic Dirac
fermions. In solids, the rigid structure of the material sets the mass and
velocity of the particles, as well as their interactions. A different, highly
flexible approach is to create model systems using fermionic atoms trapped in
the periodic potential of interfering laser beams, a method which so far has
only been applied to explore simple lattice structures [3, 4]. Here we report
on the creation of Dirac points with adjustable properties in a tunable
honeycomb optical lattice. Using momentum-resolved interband transitions, we
observe a minimum band gap inside the Brillouin zone at the position of the
Dirac points. We exploit the unique tunability of our lattice potential to
adjust the effective mass of the Dirac fermions by breaking inversion symmetry.
Moreover, changing the lattice anisotropy allows us to move the position of the
Dirac points inside the Brillouin zone. When increasing the anisotropy beyond a
critical limit, the two Dirac points merge and annihilate each other - a
situation which has recently attracted considerable theoretical interest [5-9],
but seems extremely challenging to observe in solids [10]. We map out this
topological transition in lattice parameter space and find excellent agreement
with ab initio calculations. Our results not only pave the way to model
materials where the topology of the band structure plays a crucial role, but
also provide an avenue to explore many-body phases resulting from the interplay
of complex lattice geometries with interactions [11, 12]
Emergent quantum confinement at topological insulator surfaces
Bismuth-chalchogenides are model examples of three-dimensional topological
insulators. Their ideal bulk-truncated surface hosts a single spin-helical
surface state, which is the simplest possible surface electronic structure
allowed by their non-trivial topology. They are therefore widely
regarded ideal templates to realize the predicted exotic phenomena and
applications of this topological surface state. However, real surfaces of such
compounds, even if kept in ultra-high vacuum, rapidly develop a much more
complex electronic structure whose origin and properties have proved
controversial. Here, we demonstrate that a conceptually simple model,
implementing a semiconductor-like band bending in a parameter-free
tight-binding supercell calculation, can quantitatively explain the entire
measured hierarchy of electronic states. In combination with circular dichroism
in angle-resolved photoemission (ARPES) experiments, we further uncover a rich
three-dimensional spin texture of this surface electronic system, resulting
from the non-trivial topology of the bulk band structure. Moreover, our study
reveals how the full surface-bulk connectivity in topological insulators is
modified by quantum confinement.Comment: 9 pages, including supplementary information, 4+4 figures. A high
resolution version is available at
http://www.st-andrews.ac.uk/~pdk6/pub_files/TI_quant_conf_high_res.pd
Two-dimensional universal conductance fluctuations and the electron-phonon interaction of topological surface states in Bi2Te2Se nanoribbons
The universal conductance fluctuations (UCFs), one of the most important
manifestations of mesoscopic electronic interference, have not yet been
demonstrated for the two-dimensional surface state of topological insulators
(TIs). Even if one delicately suppresses the bulk conductance by improving the
quality of TI crystals, the fluctuation of the bulk conductance still keeps
competitive and difficult to be separated from the desired UCFs of surface
carriers. Here we report on the experimental evidence of the UCFs of the
two-dimensional surface state in the bulk insulating Bi2Te2Se nanoribbons. The
solely-B\perp-dependent UCF is achieved and its temperature dependence is
investigated. The surface transport is further revealed by weak
antilocalizations. Such survived UCFs of the topological surface states result
from the limited dephasing length of the bulk carriers in ternary crystals. The
electron-phonon interaction is addressed as a secondary source of the surface
state dephasing based on the temperature-dependent scaling behavior
Topological Quantum Phase Transition in Synthetic Non-Abelian Gauge Potential
The method of synthetic gauge potentials opens up a new avenue for our
understanding and discovering novel quantum states of matter. We investigate
the topological quantum phase transition of Fermi gases trapped in a honeycomb
lattice in the presence of a synthetic non- Abelian gauge potential. We develop
a systematic fermionic effective field theory to describe a topological quantum
phase transition tuned by the non-Abelian gauge potential and ex- plore its
various important experimental consequences. Numerical calculations on lattice
scales are performed to compare with the results achieved by the fermionic
effective field theory. Several possible experimental detection methods of
topological quantum phase tran- sition are proposed. In contrast to condensed
matter experiments where only gauge invariant quantities can be measured, both
gauge invariant and non-gauge invariant quantities can be measured by
experimentally generating various non-Abelian gauges corresponding to the same
set of Wilson loops
Hedgehog Spin-texture and Berry's Phase tuning in a Magnetic Topological Insulator
Understanding and control of spin degrees of freedom on the surfaces of
topological materials are key to future applications as well as for realizing
novel physics such as the axion electrodynamics associated with time-reversal
(TR) symmetry breaking on the surface. We experimentally demonstrate
magnetically induced spin reorientation phenomena simultaneous with a
Dirac-metal to gapped-insulator transition on the surfaces of manganese-doped
Bi2Se3 thin films. The resulting electronic groundstate exhibits unique
hedgehog-like spin textures at low energies, which directly demonstrate the
mechanics of TR symmetry breaking on the surface. We further show that an
insulating gap induced by quantum tunnelling between surfaces exhibits spin
texture modulation at low energies but respects TR invariance. These spin
phenomena and the control of their Fermi surface geometrical phase first
demonstrated in our experiments pave the way for the future realization of many
predicted exotic magnetic phenomena of topological origin.Comment: 38 pages, 18 Figures, Includes new text, additional datasets and
interpretation beyond arXiv:1206.2090, for the final published version see
Nature Physics (2012
Recommended from our members
Facing Up to Longevity with Old Actuarial Methods: A Comparison of Pooled Funds and Income Tontines
We compare the concepts underlying modern actuarial solutions to pension insurance and present two recently developed pension products—pooled annuity overlay funds (based on actuarial fairness) and equitable income tontines (based on equitability). These two products adopt specific approaches to the management of longevity risk by mutualising it among participants rather than transferring it completely to the insurer. As the market would appear to be ready for such innovations, our study seeks to establish a general framework for their introduction. We stress that the notion of actuarial fairness, which characterises pooled annuity overlay funds, enables participants to join and exit the fund at any time. Such freedom of action is a quite remarkable feature and one that cannot be matched by lifelong contracts
Mapping the unconventional orbital texture in topological crystalline insulators
The newly discovered topological crystalline insulators (TCIs) harbor a
complex band structure involving multiple Dirac cones. These materials are
potentially highly tunable by external electric field, temperature or strain
and could find future applications in field-effect transistors, photodetectors,
and nano-mechanical systems. Theoretically, it has been predicted that
different Dirac cones, offset in energy and momentum-space, might harbor vastly
different orbital character, a unique property which if experimentally
realized, would present an ideal platform for accomplishing new spintronic
devices. However, the orbital texture of the Dirac cones, which is of immense
importance in determining a variety of materials properties, still remains
elusive in TCIs. Here, we unveil the orbital texture in a prototypical TCI
PbSnSe. By using Fourier-transform (FT) scanning tunneling
spectroscopy (STS) we measure the interference patterns produced by the
scattering of surface state electrons. We discover that the intensity and
energy dependences of FTs show distinct characteristics, which can directly be
attributed to orbital effects. Our experiments reveal the complex band topology
involving two Lifshitz transitions and establish the orbital nature of the
Dirac bands in this new class of topological materials, which could provide a
different pathway towards future quantum applications
Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein
A method for non-invasive visualization of genetically labelled cells in animal disease
models with micron-level resolution would greatly facilitate development of cell-based
therapies. Imaging of fluorescent proteins (FPs) using red excitation light in the “optical
window” above 600 nm is one potential method for visualizing implanted cells. However,
previous efforts to engineer FPs with peak excitation beyond 600 nm have resulted in
undesirable reductions in brightness. Here we report three new red-excitable monomeric FPs obtained by structure-guided mutagenesis of mNeptune, previously the brightest monomeric FP when excited beyond 600 nm. Two of these, mNeptune2 and mNeptune2.5, demonstrate improved maturation and brighter fluorescence, while the third, mCardinal, has a red-shifted excitation spectrum without reduction in brightness. We show that mCardinal can be used to non-invasively and longitudinally visualize the differentiation of myoblasts and stem cells into myocytes in living mice with high anatomical detail
- …
