74 research outputs found

    Vitamins A & D Inhibit the Growth of Mycobacteria in Radiometric Culture

    Get PDF
    The role of vitamins in the combat of disease is usually conceptualized as acting by modulating the immune response of an infected, eukaryotic host. We hypothesized that some vitamins may directly influence the growth of prokaryotes, particularly mycobacteria. complex).Vitamins A and D cause dose-dependent inhibition of all three mycobacterial species studied. Vitamin A is consistently more inhibitory than vitamin D. The vitamin A precursor, β-carotene, is not inhibitory, whereas three vitamin A metabolites cause inhibition. Vitamin K has no effect. Vitamin E causes negligible inhibition in a single strain.We show that vitamin A, its metabolites Retinyl acetate, Retinoic acid and 13-cis Retinoic acid and vitamin D directly inhibit mycobacterial growth in culture. These data are compatible with the hypothesis that complementing the immune response of multicellular organisms, vitamins A and D may have heretofore unproven, unrecognized, independent and probable synergistic, direct antimycobacterial inhibitory activity

    Inference of financial networks using the normalised mutual information rate

    Get PDF
    In this paper we study data from financial markets using an information theory tool that we call the normalised Mutual Information Rate and show how to use it to infer the underlying network structure of interrelations in foreign currency exchange rates and stock indices of 14 countries world-wide and the European Union. We first present the mathematical method and discuss about its computational aspects, and then apply it to artificial data from chaotic dynamics and to correlated random variates. Next, we apply the method to infer the network structure of the financial data. Particularly, we study and reveal the interrelations among the various foreign currency exchange rates and stock indices in two separate networks for which we also perform an analysis to identify their structural properties. Our results show that both are small-world networks sharing similar properties but also having distinct differences in terms of assortativity. Finally, the consistent relationships depicted among the 15 economies are further supported by a discussion from the economics view point

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Nanobiotechnology for the Therapeutic Targeting of Cancer Cells in Blood

    Get PDF
    corecore