44 research outputs found

    The RNA binding protein HuR differentially regulates unique subsets of mRNAs in estrogen receptor negative and estrogen receptor positive breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The discordance between steady-state levels of mRNAs and protein has been attributed to posttranscriptional control mechanisms affecting mRNA stability and translation. Traditional methods of genome wide microarray analysis, profiling steady-state levels of mRNA, may miss important mRNA targets owing to significant posttranscriptional gene regulation by RNA binding proteins (RBPs).</p> <p>Methods</p> <p>The ribonomic approach, utilizing RNA immunoprecipitation hybridized to microarray (RIP-Chip), provides global identification of putative endogenous mRNA targets of different RBPs. HuR is an RBP that binds to the AU-rich elements (ARE) of labile mRNAs, such as proto-oncogenes, facilitating their translation into protein. HuR has been shown to play a role in cancer progression and elevated levels of cytoplasmic HuR directly correlate with increased invasiveness and poor prognosis for many cancers, including those of the breast. HuR has been described to control genes in several of the acquired capabilities of cancer and has been hypothesized to be a tumor-maintenance gene, allowing for cancers to proliferate once they are established.</p> <p>Results</p> <p>We used HuR RIP-Chip as a comprehensive and systematic method to survey breast cancer target genes in both MCF-7 (estrogen receptor positive, ER+) and MDA-MB-231 (estrogen receptor negative, ER-) breast cancer cell lines. We identified unique subsets of HuR-associated mRNAs found individually or in both cell types. Two novel HuR targets, <it>CD9 </it>and <it>CALM2 </it>mRNAs, were identified and validated by quantitative RT-PCR and biotin pull-down analysis.</p> <p>Conclusion</p> <p>This is the first report of a side-by-side genome-wide comparison of HuR-associated targets in wild type ER+ and ER- breast cancer. We found distinct, differentially expressed subsets of cancer related genes in ER+ and ER- breast cancer cell lines, and noted that the differential regulation of two cancer-related genes by HuR was contingent upon the cellular environment.</p

    Global Gene Expression Profiling Of Human Pleural Mesotheliomas: Identification of Matrix Metalloproteinase 14 (MMP-14) as Potential Tumour Target

    Get PDF
    BACKGROUND:The goal of our study was to molecularly dissect mesothelioma tumour pathways by mean of microarray technologies in order to identify new tumour biomarkers that could be used as early diagnostic markers and possibly as specific molecular therapeutic targets. METHODOLOGY:We performed Affymetrix HGU133A plus 2.0 microarray analysis, containing probes for about 39,000 human transcripts, comparing 9 human pleural mesotheliomas with 4 normal pleural specimens. Stringent statistical feature selection detected a set of differentially expressed genes that have been further evaluated to identify potential biomarkers to be used in early diagnostics. Selected genes were confirmed by RT-PCR. As reported by other mesothelioma profiling studies, most of genes are involved in G2/M transition. Our list contains several genes previously described as prognostic classifier. Furthermore, we found novel genes, never associated before to mesotheliom that could be involved in tumour progression. Notable is the identification of MMP-14, a member of matrix metalloproteinase family. In a cohort of 70 mesothelioma patients, we found by a multivariate Cox regression analysis, that the only parameter influencing overall survival was expression of MMP14. The calculated relative risk of death in MM patients with low MMP14 expression was significantly lower than patients with high MMp14 expression (P = 0.002). CONCLUSIONS:Based on the results provided, this molecule could be viewed as a new and effective therapeutic target to test for the cure of mesothelioma

    Dengue: a continuing global threat.

    Get PDF
    Dengue fever and dengue haemorrhagic fever are important arthropod-borne viral diseases. Each year, there are ∼50 million dengue infections and ∼500,000 individuals are hospitalized with dengue haemorrhagic fever, mainly in Southeast Asia, the Pacific and the Americas. Illness is produced by any of the four dengue virus serotypes. A global strategy aimed at increasing the capacity for surveillance and outbreak response, changing behaviours and reducing the disease burden using integrated vector management in conjunction with early and accurate diagnosis has been advocated. Antiviral drugs and vaccines that are currently under development could also make an important contribution to dengue control in the future

    Immunization with a Borrelia burgdorferi BB0172-Derived Peptide Protects Mice against Lyme Disease

    Get PDF
    Lyme disease is the most prevalent arthropod borne disease in the US and it is caused by the bacterial spirochete Borrelia burgdorferi (Bb), which is acquired through the bite of an infected Ixodes tick. Vaccine development efforts focused on the von Willebrand factor A domain of the borrelial protein BB0172 from which four peptides (A, B, C and D) were synthesized and conjugated to Keyhole Limpet Hemocyanin, formulated in Titer Max® adjuvant and used to immunize C3H/HeN mice subcutaneously at days 0, 14 and 21. Sera were collected to evaluate antibody responses and some mice were sacrificed for histopathology to evaluate vaccine safety. Twenty-eight days post-priming, protection was evaluated by needle inoculation of half the mice in each group with 103 Bb/mouse, whereas the rest were challenged with 105Bb/mouse. Eight weeks post-priming, another four groups of similarly immunized mice were challenged using infected ticks. In both experiments, twenty-one days post-challenge, the mice were sacrificed to determine antibody responses, bacterial burdens and conduct histopathology. Results showed that only mice immunized with peptide B were protected against challenge with Bb. In addition, compared to the other the treatment groups, peptide B-immunized mice showed very limited inflammation in the heart and joint tissues. Peptide B-specific antibody titers peaked at 8 weeks post-priming and surprisingly, the anti-peptide B antibodies did not cross-react with Bb lysates. These findings strongly suggest that peptide B is a promising candidate for the development of a new DIVA vaccine (Differentiate between Infected and Vaccinated Animals) for protection against Lyme disease.The open access fee for this work was funded through the Texas A&M University Open Access to Knowledge (OAK) Fund

    Dengue: a continuing global threat

    Full text link

    LSD1 ablation stimulates anti-tumor immunity and enables checkpoint blockade

    No full text
    Chromatin regulators play a broad role in regulating gene expression and, when gone awry, can lead to cancer. Here, we demonstrate that ablation of the histone demethylase LSD1 in cancer cells increases repetitive element expression, including endogenous retroviral elements (ERVs), and decreases expression of RNA-induced silencing complex (RISC) components. Significantly, this leads to double-stranded RNA (dsRNA) stress and activation of type 1 interferon, which stimulates anti-tumor T cell immunity and restrains tumor growth. Furthermore, LSD1 depletion enhances tumor immunogenicity and T cell infiltration in poorly immunogenic tumors and elicits significant responses of checkpoint blockade-refractory mouse melanoma to anti-PD-1 therapy. Consistently, TCGA data analysis shows an inverse correlation between LSD1 expression and CD8+ T cell infiltration in various human cancers. Our study identifies LSD1 as a potent inhibitor of anti-tumor immunity and responsiveness to immunotherapy and suggests LSD1 inhibition combined with PD-(L)1 blockade as a novel cancer treatment strategy

    Hydrogen bonding penalty upon ligand binding

    Get PDF
    Ligand binding involves breakage of hydrogen bonds with water molecules and formation of new hydrogen bonds between protein and ligand. In this work, the change of hydrogen bonding energy in the binding process, namely hydrogen bonding penalty, is evaluated with a new method. The hydrogen bonding penalty can not only be used to filter unrealistic poses in docking, but also improve the accuracy of binding energy calculation. A new model integrated with hydrogen bonding penalty for free energy calculation gives a root mean square error of 0.7 kcal/mol on 74 inhibitors in the training set and of 1.1 kcal/mol on 64 inhibitors in the test set. Moreover, an application of hydrogen bonding penalty into a high throughput docking campaign for EphB4 inhibitors is presented, and remarkably, three novel scaffolds are discovered out of seven tested. The binding affinity and ligand efficiency of the most potent compound is about 300 nM and 0.35 kcal/mol per non-hydrogen atom, respectively
    corecore