2 research outputs found
IN SILICO STUDY OF YODIUM LEAF (JATROPHA MULTIFIDA LINN) ACTIVE COMPOUND AS ANTIBIOTIC FOR DIABETIC WOUNDS
Objective: In this study, an in silico test of 13 active compounds of leaf Jatropha multifida Linn. was carried out against the gyrase receptor (PDB ID: 2XCT).
Methods: The methods include molecular docking, ADMET prediction, and a review of Lipinski's Rule of Five.
Results: Molecular docking simulation results obtained three test compounds with free energy of binding (∆G) and inhibition constants (Ki) at active site A, which are lower than the comparison compound, ciprofloxacin (∆G-5.41 kcal/mol). The three compounds are C2 (multidione), C5 (citlalitrione), and C6 (cleomiscosin A) which have ΔG of-6.00,-6.90, and-5.56 kcal/mol. Based on ADMET prediction, compound C5 has better pharmacokinetics, pharmacodynamics, and toxic activities compared to ciprofloxacin.
Conclusion: Therefore, C5 is the best active compound from J. multifida, which can be used as a candidate for new antibiotics in the treatment of diabetic wounds
A Review: Using Multiple Templates for Molecular Imprinted Polymer: Is It Good?
A multi-template molecularly imprinting polymer (MT-MIP) strategy has been proposed and is increasingly utilised to synthesise MIP with multiple recognition sites in a single polymer using multiple target species as templates. This approach can expand MIP applications for simultaneous recognition and extraction of more than one analyte. The advantages of MT-MIP are simultaneous analyte extraction in one process, lower solvent consumption, cost-effectiveness, and short analysis time. The use of multiple templates to prepare a MIP reduces the effort required to prepare different MIPs for different analytes separately. Although there are many studies about developing MT-MIP, there are no review articles that discuss the success rate of MT-MIP. Therefore, in this review, we summarise MT-MIP synthesis, including the polymerisation method being used, the important factors that affect the quality of MT-MIP, and MT-MIP applications. MT-MIP has great potential in chemical isolation and analysis. MT-MIP produces a product that has good sensitivity, selectivity, and reusability. Furthermore, many templates, functional monomers, and crosslinkers can be formulated as MT-MIP and have a high success rate. This is evidenced by the good values of the maximum absorption capacity (Qmax), imprinting factor (IF), and reusability. We expect that the evidence presented in this review can encourage additional research on the development and application of MT-MIP