12 research outputs found
Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells
e Glasgow and Manchester Experimental Cancer
Medicine Centres (ECMC), which are funded by CR-UK and the Chief Scientist’s Office (Scotland). We
acknowledge the funders who have contributed to this work: MRC stratified medicine infrastructure award
(A.D.W.), CR-UK C11074/A11008 (F.P., L.E.M.H., T.L.H., A.D.W.); LLR08071 (S.A.A., E.C.); LLR11017
(M.C.); SCD/04 (M.C.); LLR13035 (S.A.A., K.D., A.D.W., and A.P.); LLR14005 (M.T.S., D.V.); KKL690 (L.E.P.);
KKL698 (P.B.); LLR08004 (A.D.W., A.P. and A.J.W.); MRC CiC (M.E.D.); The Howat Foundation (FACS
support); Friends of Paul O’Gorman (K.D. and FACS support); ELF 67954 (S.A.A.); BSH start up fund (S.A.A.);
MR/K014854/1 (K.D.)
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Standardization of molecular monitoring of CML: results and recommendations from the European treatment and outcome study
Standardized monitoring of BCR::ABL1 mRNA levels is essential for the management of chronic myeloid leukemia (CML) patients. From 2016 to 2021 the European Treatment and Outcome Study for CML (EUTOS) explored the use of secondary, lyophilized cell-based BCR::ABL1 reference panels traceable to the World Health Organization primary reference material to standardize and validate local laboratory tests. Panels were used to assign and validate conversion factors (CFs) to the International Scale and assess the ability of laboratories to assess deep molecular response (DMR). The study also explored aspects of internal quality control. The percentage of EUTOS reference laboratories (n = 50) with CFs validated as optimal or satisfactory increased from 67.5% to 97.6% and 36.4% to 91.7% for ABL1 and GUSB, respectively, during the study period and 98% of laboratories were able to detect MR4.5 in most samples. Laboratories with unvalidated CFs had a higher coefficient of variation for BCR::ABL1(IS) and some laboratories had a limit of blank greater than zero which could affect the accurate reporting of DMR. Our study indicates that secondary reference panels can be used effectively to obtain and validate CFs in a manner equivalent to sample exchange and can also be used to monitor additional aspects of quality assurance.</p
Comparative study of <i>BCR-ABL1</i> quantification: Xpert assay, a feasible solution to standardization concerns
The level of BCR-ABL1 reached after treatment with tyrosine kinase inhibitors is an effective marker of the therapeutic response and a good survival predictor in chronic myeloid leukemia (CML) patients. However, no agreement has yet been achieved about either the standardization of the technique to determine BCR-ABL1 or the interpretation of the results. The aim of this study was to compare the method currently recommended by the European LeukemiaNet,which includes the application of a conversion factor to express the results in international scale, with an automated method (Xpert BCR-ABL™, Cepheid). BCR-ABL1 transcript quantification was performed in 117 samples from CML patients in two different laboratories by both methods, and the results were compared by statistical procedures. A high linear correlation was obtained in the results between the two methods. The concordance at logarithmic intervals reached 62 %. When the major molecular response (MMR) was analyzed, 85 % agreement was achieved. The automated method provides reproducible results and does not show significant differences compared with the traditional method. As a clinical tool, Xpert correctly classified the patients inMMR and can be considered a useful alternative for the molecular follow-up of CML patients.12501245
Safety and efficacy of ponatinib in real world clinical practice. Results from the Spanish Compassionate Use Program. A GELMC study
Aims: The purpose of this study is to provide safety and efficacy information
from patients treated with ponatinib in real world clinical practice.N
MYC antagonizes the differentiation induced by imatinib in chronic myeloid leukemia cells through downregulation of p27KIP1
Cabozantinib promotes erythroid differentiation in K562 erythroleukemia cells through global changes in gene expression and JNK activation
Standardization of molecular monitoring of CML: results and recommendations from the European treatment and outcome study
Standardized monitoring of BCR::ABL1 mRNA levels is essential for the management of chronic myeloid leukemia (CML) patients. From 2016 to 2021 the European Treatment and Outcome Study for CML (EUTOS) explored the use of secondary, lyophilized cell-based BCR::ABL1 reference panels traceable to the World Health Organization primary reference material to standardize and validate local laboratory tests. Panels were used to assign and validate conversion factors (CFs) to the International Scale and assess the ability of laboratories to assess deep molecular response (DMR). The study also explored aspects of internal quality control. The percentage of EUTOS reference laboratories (n = 50) with CFs validated as optimal or satisfactory increased from 67.5% to 97.6% and 36.4% to 91.7% for ABL1 and GUSB, respectively, during the study period and 98% of laboratories were able to detect MR
4.5 in most samples. Laboratories with unvalidated CFs had a higher coefficient of variation for BCR::ABL1
IS and some laboratories had a limit of blank greater than zero which could affect the accurate reporting of DMR. Our study indicates that secondary reference panels can be used effectively to obtain and validate CFs in a manner equivalent to sample exchange and can also be used to monitor additional aspects of quality assurance.
</p
