3,656 research outputs found
Precision Gauge Unification from Extra Yukawa Couplings
We investigate the impact of extra vector-like GUT multiplets on the
predicted value of the strong coupling. We find in particular that Yukawa
couplings between such extra multiplets and the MSSM Higgs doublets can resolve
the familiar two-loop discrepancy between the SUSY GUT prediction and the
measured value of alpha_3. Our analysis highlights the advantages of the
holomorphic scheme, where the perturbative running of gauge couplings is
saturated at one loop and further corrections are conveniently described in
terms of wavefunction renormalization factors. If the gauge couplings as well
as the extra Yukawas are of O(1) at the unification scale, the relevant
two-loop correction can be obtained analytically. However, the effect persists
also in the weakly-coupled domain, where possible non-perturbative corrections
at the GUT scale are under better control.Comment: 26 pages, LaTeX. v6: Important early reference adde
Nitrosothiols in the immune system: Signaling and protection
Antioxidants and Redox Signaling 18.3 (2013): 288-308Significance: In the immune system, nitric oxide (NO) has been mainly associated with antibacterial defenses exerted through oxidative, nitrosative, and nitrative stress and signal transduction through cyclic GMP-dependent mechanisms. However, S-nitrosylation is emerging as a post-translational modification (PTM) involved in NO-mediated cell signaling. Recent Advances: Precise roles for S-nitrosylation in signaling pathways have been described both for innate and adaptive immunity. Denitrosylation may protect macrophages from their own S-nitrosylation, while maintaining nitrosative stress compartmentalized in the phagosomes. Nitrosothiols have also been shown to be beneficial in experimental models of autoimmune diseases, mainly through their role in modulating T-cell differentiation and function. Critical Issues: Relationship between S-nitrosylation, other thiol redox PTMs, and other NO-signaling pathways has not been always taken into account, particularly in the context of immune responses. Methods for assaying S-nitrosylation in individual proteins and proteomic approaches to study the S-nitrosoproteome are constantly being improved, which helps to move this field forward. Future Directions: Integrated studies of signaling pathways in the immune system should consider whether S-nitrosylation/denitrosylation processes are among the PTMs influencing the activity of key signaling and adaptor proteins. Studies in pathophysiological scenarios will also be of interest to put these mechanisms into broader contexts. Interventions modulating nitrosothiol levels in autoimmune disease could be investigated with a view to developing new therapiesFinanced by the Spanish Government grants CSD2007-00020 (RosasNet, Consolider-Ingenio 2010 programme), CP07/00143 (Miguel Servet programme), and PS09/00101; and PI10/0213
Substrate docking to Ξ³-secretase allows access of Ξ³-secretase modulators to an allosteric site
Ξ³-Secretase generates the peptides of Alzheimer's disease, AΞ²40 and AΞ²42, by cleaving the amyloid precursor protein within its transmembrane domain. Ξ³-Secretase also cleaves numerous other substrates, raising concerns about Ξ³-secretase inhibitor off-target effects. Another important class of drugs, Ξ³-secretase modulators, alter the cleavage site of Ξ³-secretase on amyloid precursor protein, changing the AΞ²42/AΞ²40 ratio, and are thus a promising therapeutic approach for Alzheimer's disease. However, the target for Ξ³-secretase modulators is uncertain, with some data suggesting that they function on Ξ³-secretase, whereas others support their binding to the amyloid precursor. In this paper we address this controversy by using a fluorescence resonance energy transfer-based assay to examine whether Ξ³-secretase modulators alter Presenilin-1/Ξ³-secretase conformation in intact cells in the absence of its natural substrates such as amyloid precursor protein and Notch. We report that the Ξ³-secretase allosteric site is located within the Ξ³-secretase complex, but substrate docking is needed for Ξ³-secretase modulators to access this site
Orbital Angular Momentum (OAM) of Rotating Modes Driven by Electrons in Electron Cyclotron Masers
The well-defined orbital angular momentum (OAM) of rotating cavity modes operating near the cutoff frequency excited by gyrating electrons in a high-power electron cyclotron maser (ECM)-a gyrotron-has been derived by photonic and electromagnetic wave approaches. A mode generator was built with a high-precision 3D printing technique to mimic the rotating gyrotron modes for precise low-power measurements and shows clear natural production of higher-order OAM modes. Cold-test measurements of higher-order OAM mode generation promise the realization towards wireless long-range communications using high-power ECMs
Pathogen- and Host-Directed Antileishmanial Effects Mediated by Polyhexanide (PHMB)
BACKGROUND:Cutaneous leishmaniasis (CL) is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. CL causes enormous suffering in many countries worldwide. There is no licensed vaccine against CL, and the chemotherapy options show limited efficacy and high toxicity. Localization of the parasites inside host cells is a barrier to most standard chemo- and immune-based interventions. Hence, novel drugs, which are safe, effective and readily accessible to third-world countries and/or drug delivery technologies for effective CL treatments are desperately needed. METHODOLOGY/PRINCIPAL FINDINGS:Here we evaluated the antileishmanial properties and delivery potential of polyhexamethylene biguanide (PHMB; polyhexanide), a widely used antimicrobial and wound antiseptic, in the Leishmania model. PHMB showed an inherent antileishmanial activity at submicromolar concentrations. Our data revealed that PHMB kills Leishmania major (L. major) via a dual mechanism involving disruption of membrane integrity and selective chromosome condensation and damage. PHMB's DNA binding and host cell entry properties were further exploited to improve the delivery and immunomodulatory activities of unmethylated cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN). PHMB spontaneously bound CpG ODN, forming stable nanopolyplexes that enhanced uptake of CpG ODN, potentiated antimicrobial killing and reduced host cell toxicity of PHMB. CONCLUSIONS:Given its low cost and long history of safe topical use, PHMB holds promise as a drug for CL therapy and delivery vehicle for nucleic acid immunomodulators
Yokukansan Inhibits Neuronal Death during ER Stress by Regulating the Unfolded Protein Response
Recently, several studies have reported Yokukansan (Tsumura TJ-54), a traditional Japanese medicine, as a potential new drug for the treatment of Alzheimer's disease (AD). Endoplasmic reticulum (ER) stress is known to play an important role in the pathogenesis of AD, particularly in neuronal death. Therefore, we examined the effect of Yokukansan on ER stress-induced neurotoxicity and on familial AD-linked presenilin-1 mutation-associated cell death.We employed the WST-1 assay and monitored morphological changes to evaluate cell viability following Yokukansan treatment or treatment with its components. Western blotting and PCR were used to observe the expression levels of GRP78/BiP, caspase-4 and C/EBP homologous protein.Yokukansan inhibited neuronal death during ER stress, with Cnidii Rhizoma (Senkyu), a component of Yokukansan, being particularly effective. We also showed that Yokukansan and Senkyu affect the unfolded protein response following ER stress and that these drugs inhibit the activation of caspase-4, resulting in the inhibition of ER stress-induced neuronal death. Furthermore, we found that the protective effect of Yokukansan and Senkyu against ER stress could be attributed to the ferulic acid content of these two drugs.Our results indicate that Yokukansan, Senkyu and ferulic acid are protective against ER stress-induced neuronal cell death and may provide a possible new treatment for AD
Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin
One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΞΞG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution
- β¦