152 research outputs found

    Mistakes that affect others: An fMRI study on processing of own errors in a social context

    Get PDF
    In social contexts, errors have a special significance and often bear consequences for others. Thinking about others and drawing social inferences in interpersonal games engages the mentalizing system. We used neuroimaging to investigate the differences in brain activations between errors that affect only agents themselves and errors that additionally influence the payoffs of interaction partners. Activation in posterior medial frontal cortex (pMFC) and bilateral insula was increased for all errors, whereas errors that implied consequences for others specifically activated medial prefrontal cortex (mPFC), an important part of the mentalizing system. The results demonstrate that performance monitoring in social contexts involves additional processes and brain structures compared with individual performance monitoring where errors only have consequences for the person committing them. Taking into account how one’s behavior may affect others is particularly crucial for adapting behavior in interpersonal interactions and joint action

    Living with a Crucial Decision: A Qualitative Study of Parental Narratives Three Years after the Loss of Their Newborn in the NICU

    Get PDF
    BACKGROUND: The importance of involving parents in the end-of-life decision-making-process (EOL DMP) for their child in the neonatal intensive care unit (NICU) is recognised by ethical guidelines in numerous countries. However, studies exploring parents' opinions on the type of involvement report conflicting results. This study sought to explore parents' experience of the EOL DMP for their child in the NICU. METHODS: The study used a retrospective longitudinal design with a qualitative analysis of parental experience 3 years after the death of their child in four NICUs in France. 53 face-to-face interviews and 80 telephone interviews were conducted with 164 individuals. Semi-structured interviews were conducted to explore how parents perceived their role in the decision process, what they valued about physicians' attitudes in this situation and whether their long-term emotional well being varied according to their perceived role in the EOL DMP. FINDINGS: Qualitative analysis identified four types of perceived role in the DMP: shared, medical, informed parental decision, and no decision. Shared DM was the most appreciated by parents. Medical DM was experienced as positive only when it was associated with communication. Informed parental DM was associated with feelings of anxiousness and abandonment. The physicians' attitudes that were perceived as helpful in the long term were explicit sharing of responsibility, clear expression of staff preferences, and respectful care and language toward the child. INTERPRETATION: Parents find it valuable to express their opinion in the EOL DMP of their child. Nonetheless, they do need continuous emotional support and an explicit share of the responsibility for the decision. As involvement preferences and associated feelings can vary, parents should be able to decide what role they want to play. However, our study suggests that fully autonomous decisions should be misadvised in these types of tragic choices

    Reduced Spontaneous Eye Blink Rates in Recreational Cocaine Users: Evidence for Dopaminergic Hypoactivity

    Get PDF
    Chronic use of cocaine is associated with a reduced density of dopaminergic D2 receptors in the striatum, with negative consequences for cognitive control processes. Increasing evidence suggests that cognitive control is also affected in recreational cocaine consumers. This study aimed at linking these observations to dopaminergic malfunction by studying the spontaneous eyeblink rate (EBR), a marker of striatal dopaminergic functioning, in adult recreational users and a cocaine-free sample that was matched on age, race, gender, and personality traits. Correlation analyses show that EBR is significantly reduced in recreational users compared to cocaine-free controls, suggesting that cocaine use induces hypoactivity in the subcortical dopamine system

    Comparing individual-based approaches to modelling the self-organization of multicellular tissues.

    Get PDF
    The coordinated behaviour of populations of cells plays a central role in tissue growth and renewal. Cells react to their microenvironment by modulating processes such as movement, growth and proliferation, and signalling. Alongside experimental studies, computational models offer a useful means by which to investigate these processes. To this end a variety of cell-based modelling approaches have been developed, ranging from lattice-based cellular automata to lattice-free models that treat cells as point-like particles or extended shapes. However, it remains unclear how these approaches compare when applied to the same biological problem, and what differences in behaviour are due to different model assumptions and abstractions. Here, we exploit the availability of an implementation of five popular cell-based modelling approaches within a consistent computational framework, Chaste (http://www.cs.ox.ac.uk/chaste). This framework allows one to easily change constitutive assumptions within these models. In each case we provide full details of all technical aspects of our model implementations. We compare model implementations using four case studies, chosen to reflect the key cellular processes of proliferation, adhesion, and short- and long-range signalling. These case studies demonstrate the applicability of each model and provide a guide for model usage

    BOLD Correlates of Trial-by-Trial Reaction Time Variability in Gray and White Matter: A Multi-Study fMRI Analysis

    Get PDF
    Reaction time (RT) is one of the most widely used measures of performance in experimental psychology, yet relatively few fMRI studies have included trial-by-trial differences in RT as a predictor variable in their analyses. Using a multi-study approach, we investigated whether there are brain regions that show a general relationship between trial-by-trial RT variability and activation across a range of cognitive tasks.The relation between trial-by-trial differences in RT and brain activation was modeled in five different fMRI datasets spanning a range of experimental tasks and stimulus modalities. Three main findings were identified. First, in a widely distributed set of gray and white matter regions, activation was delayed on trials with long RTs relative to short RTs, suggesting delayed initiation of underlying physiological processes. Second, in lateral and medial frontal regions, activation showed a "time-on-task" effect, increasing linearly as a function of RT. Finally, RT variability reliably modulated the BOLD signal not only in gray matter but also in diffuse regions of white matter.The results highlight the importance of modeling trial-by-trial RT in fMRI analyses and raise the possibility that RT variability may provide a powerful probe for investigating the previously elusive white matter BOLD signal

    Neural Correlates of Visual Motion Prediction

    Get PDF
    Predicting the trajectories of moving objects in our surroundings is important for many life scenarios, such as driving, walking, reaching, hunting and combat. We determined human subjects’ performance and task-related brain activity in a motion trajectory prediction task. The task required spatial and motion working memory as well as the ability to extrapolate motion information in time to predict future object locations. We showed that the neural circuits associated with motion prediction included frontal, parietal and insular cortex, as well as the thalamus and the visual cortex. Interestingly, deactivation of many of these regions seemed to be more closely related to task performance. The differential activity during motion prediction vs. direct observation was also correlated with task performance. The neural networks involved in our visual motion prediction task are significantly different from those that underlie visual motion memory and imagery. Our results set the stage for the examination of the effects of deficiencies in these networks, such as those caused by aging and mental disorders, on visual motion prediction and its consequences on mobility related daily activities

    Problems of multi-species organisms: endosymbionts to holobionts

    Get PDF
    The organism is one of the fundamental concepts of biology and has been at the center of many discussions about biological individuality, yet what exactly it is can be confusing. The definition that we find generally useful is that an organism is a unit in which all the subunits have evolved to be highly cooperative, with very little conflict. We focus on how often organisms evolve from two or more formerly independent organisms. Two canonical transitions of this type—replicators clustered in cells and endosymbiotic organelles within host cells—demonstrate the reality of this kind of evolutionary transition and suggest conditions that can favor it. These conditions include co-transmission of the partners across generations and rules that strongly regulate and limit conflict, such as a fair meiosis. Recently, much attention has been given to associations of animals with microbes involved in their nutrition. These range from tight endosymbiotic associations like those between aphids and Buchnera bacteria, to the complex communities in animal intestines. Here, starting with a reflection about identity through time (which we call “Theseus’s fish”), we consider the distinctions between these kinds of animal–bacteria interactions and describe the criteria by which a few can be considered jointly organismal but most cannot

    The magnetic Rayleigh–Taylor instability in solar prominences

    Get PDF
    corecore