13 research outputs found

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation

    Peste des Petits Ruminants

    No full text
    Heartwater (or cowdriosis) is a tick-borne disease caused by Ehrlichia ruminantium, an obligatory intracellular bacterium of the order Rickettsiales, transmitted by several ticks of the genus Amblyomma. The organism is genetically highly variable which prevented until now the development of efficient vaccines. The disease is enzootic in sub-Sahelian Africa and in some Caribbean islands. It affects domestic and wild ruminants, the susceptibility to cowdriosis varying greatly between breeds and species: African wildlife shows mainly asymptomatic infections; local cattle breeds are generally protected due to enzootic stability; and introduced cattle breeds and small ruminants, even in enzootic regions, are usually susceptible to heartwater and can suffer high mortality rates. Cowdriosis is characterized by a sudden and acute fever followed by nervous, respiratory, and gastrointestinal symptoms and by hydrothorax and hydropericardium during postmortem examination. In West Africa, the only vector is Amblyomma variegatum, present in areas where pluviometry is higher than 500 mm. Therefore, animals of a high proportion of the Sahelian region are usually not infested by the tick and not infected by the bacterium. They are thus susceptible when introduced in southern parts of the Sahel or in the subhumid neighboring areas of the West African countries, for example during transhumance. Tetracyclines are effective drugs to treat heartwater when administered before occurrence of the nervous symptoms. Various vaccines have been tested, and are still developed, but, up to now, none of them showed enough effectiveness against all the field strains of E. ruminantium to allow its marketing. Prevention is therefore mainly achieved by drastic vector control or, on the contrary, acquisition of enzootic stability following tick infestation combined with tetracycline treatment as soon as hyperthermia occurs
    corecore