423 research outputs found

    Spatial Distribution of the Pathways of Cholesterol Homeostasis in Human Retina

    Get PDF
    The retina is a light-sensitive tissue lining the inner surface of the eye and one of the few human organs whose cholesterol maintenance is still poorly understood. Challenges in studies of the retina include its complex multicellular and multilayered structure; unique cell types and functions; and specific physico-chemical environment.We isolated specimens of the neural retina (NR) and underlying retinal pigment epithelium (RPE)/choroid from six deceased human donors and evaluated them for expression of genes and proteins representing the major pathways of cholesterol input, output and regulation. Eighty-four genes were studied by PCR array, 16 genes were assessed by quantitative real time PCR, and 13 proteins were characterized by immunohistochemistry. Cholesterol distribution among different retinal layers was analyzed as well by histochemical staining with filipin. Our major findings pertain to two adjacent retinal layers: the photoreceptor outer segments of NR and the RPE. We demonstrate that in the photoreceptor outer segments, cholesterol biosynthesis, catabolism and regulation via LXR and SREBP are weak or absent and cholesterol content is the lowest of all retinal layers. Cholesterol maintenance in the RPE is different, yet the gene expression also does not appear to be regulated by the SREBPs and varies significantly among different individuals.This comprehensive investigation provides important insights into the relationship and spatial distribution of different pathways of cholesterol input, output and regulation in the NR-RPE region. The data obtained are important for deciphering the putative link between cholesterol and age-related macular degeneration, a major cause of irreversible vision loss in the elderly

    Academic Performance and Behavioral Patterns

    Get PDF
    Identifying the factors that influence academic performance is an essential part of educational research. Previous studies have documented the importance of personality traits, class attendance, and social network structure. Because most of these analyses were based on a single behavioral aspect and/or small sample sizes, there is currently no quantification of the interplay of these factors. Here, we study the academic performance among a cohort of 538 undergraduate students forming a single, densely connected social network. Our work is based on data collected using smartphones, which the students used as their primary phones for two years. The availability of multi-channel data from a single population allows us to directly compare the explanatory power of individual and social characteristics. We find that the most informative indicators of performance are based on social ties and that network indicators result in better model performance than individual characteristics (including both personality and class attendance). We confirm earlier findings that class attendance is the most important predictor among individual characteristics. Finally, our results suggest the presence of strong homophily and/or peer effects among university students

    Ambient light modulation of exogenous attention to threat

    Full text link
    Planet Earth’s motion yields a 50 % day–50 % night yearly balance in every latitude or longitude, so survival must be guaranteed in very different light conditions in many species, including human. Cone- and rod-dominant vision, respectively specialized in light and darkness, present several processing differences, which are—at least partially—reflected in event-related potentials (ERPs). The present experiment aimed at characterizing exogenous attention to threatening (spiders) and neutral (wheels) distractors in two environmental light conditions, low mesopic (L, 0.03 lx) and high mesopic (H, 6.5 lx), yielding a differential photoreceptor activity balance: rod > cone and rod < cone, respectively. These distractors were presented in the lower visual hemifield while the 40 participants were involved in a digit categorization task. Stimuli, both targets (digits) and distractors, were exactly the same in L and H. Both ERPs and behavioral performance in the task were recorded. Enhanced attentional capture by salient distractors was observed regardless of ambient light level. However, ERPs showed a differential pattern as a function of ambient light. Thus, significantly enhanced amplitude to salient distractors was observed in posterior P1 and early anterior P2 (P2a) only during the H context, in late P2a during the L context, and in occipital P3 during both H and L contexts. In other words, while exogenous attention to threat was equally efficient in light and darkness, cone-dominant exogenous attention was faster than rod-dominant, in line with previous data indicating slower processing times for rod- than for cone-dominant visionThis research was supported by the Grants PSI2014-54853-P and PSI2012-37090 from the Ministerio de Economía y Competitividad of Spain (MINECO

    An Abundant Evolutionarily Conserved CSB-PiggyBac Fusion Protein Expressed in Cockayne Syndrome

    Get PDF
    Cockayne syndrome (CS) is a devastating progeria most often caused by mutations in the CSB gene encoding a SWI/SNF family chromatin remodeling protein. Although all CSB mutations that cause CS are recessive, the complete absence of CSB protein does not cause CS. In addition, most CSB mutations are located beyond exon 5 and are thought to generate only C-terminally truncated protein fragments. We now show that a domesticated PiggyBac-like transposon PGBD3, residing within intron 5 of the CSB gene, functions as an alternative 3′ terminal exon. The alternatively spliced mRNA encodes a novel chimeric protein in which CSB exons 1–5 are joined in frame to the PiggyBac transposase. The resulting CSB-transposase fusion protein is as abundant as CSB protein itself in a variety of human cell lines, and continues to be expressed by primary CS cells in which functional CSB is lost due to mutations beyond exon 5. The CSB-transposase fusion protein has been highly conserved for at least 43 Myr since the divergence of humans and marmoset, and appears to be subject to selective pressure. The human genome contains over 600 nonautonomous PGBD3-related MER85 elements that were dispersed when the PGBD3 transposase was last active at least 37 Mya. Many of these MER85 elements are associated with genes which are involved in neuronal development, and are known to be regulated by CSB. We speculate that the CSB-transposase fusion protein has been conserved for host antitransposon defense, or to modulate gene regulation by MER85 elements, but may cause CS in the absence of functional CSB protein

    Cortical Plasticity Induced by Transcranial Magnetic Stimulation during Wakefulness Affects Electroencephalogram Activity during Sleep

    Get PDF
    BACKGROUND:Sleep electroencephalogram (EEG) brain oscillations in the low-frequency range show local signs of homeostatic regulation after learning. Such increases and decreases of slow wave activity are limited to the cortical regions involved in specific task performance during wakefulness. Here, we test the hypothesis that reorganization of motor cortex produced by long-term potentiation (LTP) affects EEG activity of this brain area during subsequent sleep. METHODOLOGY/PRINCIPAL FINDINGS:By pairing median nerve stimulation with transcranial magnetic stimulation over the contralateral motor cortex, one can potentiate the motor output, which is presumed to reflect plasticity of the neural circuitry. This paired associative stimulation increases M1 cortical excitability at interstimulus intervals of 25 ms. We compared the scalp distribution of sleep EEG power following paired associative stimulation at 25 ms to that following a control paradigm with 50 ms intervals. It is shown that the experimental manipulation by paired associative stimulation at 25 ms induces a 48% increase in amplitude of motor evoked potentials. This LTP-like potentiation, induced during waking, affects delta and theta EEG power in both REM and non-REM sleep, measured during the following night. Slow-wave activity increases in some frontal and prefrontal derivations and decreases at sites neighboring and contralateral to the stimulated motor cortex. The magnitude of increased amplitudes of motor evoked potentials by the paired associative stimulation at 25 ms predicts enhancements of slow-wave activity in prefrontal regions. CONCLUSIONS/SIGNIFICANCE:An LTP-like paradigm, presumably inducing increased synaptic strength, leads to changes in local sleep regulation, as indexed by EEG slow-wave activity. Enhancement and depression of slow-wave activity are interpreted in terms of a simultaneous activation of both excitatory and inhibitory circuits consequent to the paired associative stimulation at 25 ms

    Gender Differences in Sleep Deprivation Effects on Risk and Inequality Aversion: Evidence from an Economic Experiment

    Get PDF
    Excessive working hours—even at night—are becoming increasingly common in our modern 24/7 society. The prefrontal cortex (PFC) is particularly vulnerable to the effects of sleep loss and, consequently, the specific behaviors subserved by the functional integrity of the PFC, such as risk-taking and pro-social behavior, may be affected significantly. This paper seeks to assess the effects of one night of sleep deprivation on subjects’ risk and social preferences, which are probably the most explored behavioral domains in the tradition of Experimental Economics. This novel cross-over study employs thirty-two university students (gender-balanced) participating to 2 counterbalanced laboratory sessions in which they perform standard risk and social preference elicitation protocols. One session was after one night of undisturbed sleep at home, and the other was after one night of sleep deprivation in the laboratory. Sleep deprivation causes increased sleepiness and decreased alertness in all subjects. After sleep loss males make riskier decisions compared to the rested condition, while females do the opposite. Females likewise show decreased inequity aversion after sleep deprivation. As for the relationship between cognitive ability and economic decisions, sleep deprived individuals with higher cognitive reflection show lower risk aversion and more altruistic behavior. These results show that one night of sleep deprivation alters economic behavior in a gender-sensitive way. Females’ reaction to sleep deprivation, characterized by reduced risky choices and increased egoism compared to males, may be related to intrinsic psychological gender differences, such as in the way men and women weigh up probabilities in their decision-making, and/or to the different neurofunctional substrate of their decision-making.The authors acknowledge financial support from the Spanish Ministry of Economic Competititveness (ECO2012-34928), Italian Ministry of University and Research MIUR (PRIN 20103S5RN3_002), Generalitat Valenciana (Research Projects Gruposo3/086), the Instituto Valenciano de Investigaciones Económicas (IVIE), and the Ministero della Salute (RF-2009-1528677)

    History of Reading Struggles Linked to Enhanced Learning in Low Spatial Frequency Scenes

    Get PDF
    People with dyslexia, who face lifelong struggles with reading, exhibit numerous associated low-level sensory deficits including deficits in focal attention. Countering this, studies have shown that struggling readers outperform typical readers in some visual tasks that integrate distributed information across an expanse. Though such abilities would be expected to facilitate scene memory, prior investigations using the contextual cueing paradigm failed to find corresponding advantages in dyslexia. We suggest that these studies were confounded by task-dependent effects exaggerating known focal attention deficits in dyslexia, and that, if natural scenes were used as the context, advantages would emerge. Here, we investigate this hypothesis by comparing college students with histories of severe lifelong reading difficulties (SR) and typical readers (TR) in contexts that vary attention load. We find no differences in contextual-cueing when spatial contexts are letter-like objects, or when contexts are natural scenes. However, the SR group significantly outperforms the TR group when contexts are low-pass filtered natural scenes [F(3, 39) = 3.15, p<.05]. These findings suggest that perception or memory for low spatial frequency components in scenes is enhanced in dyslexia. These findings are important because they suggest strengths for spatial learning in a population otherwise impaired, carrying implications for the education and support of students who face challenges in school

    Measurements of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits on beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at √s = 13 TeV

    Get PDF
    Cross-section measurements of top-quark pair production where the hadronically decaying top quark has transverse momentum greater than 355 GeV and the other top quark decays into ℓνb are presented using 139 fb−1 of data collected by the ATLAS experiment during proton-proton collisions at the LHC. The fiducial cross-section at s = 13 TeV is measured to be σ = 1.267 ± 0.005 ± 0.053 pb, where the uncertainties reflect the limited number of data events and the systematic uncertainties, giving a total uncertainty of 4.2%. The cross-section is measured differentially as a function of variables characterising the tt¯ system and additional radiation in the events. The results are compared with various Monte Carlo generators, including comparisons where the generators are reweighted to match a parton-level calculation at next-to-next-to-leading order. The reweighting improves the agreement between data and theory. The measured distribution of the top-quark transverse momentum is used to search for new physics in the context of the effective field theory framework. No significant deviation from the Standard Model is observed and limits are set on the Wilson coefficients of the dimension-six operators OtG and Otq(8), where the limits on the latter are the most stringent to date. [Figure not available: see fulltext.]

    Measurement and interpretation of same-sign W boson pair production in association with two jets in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents the measurement of fducial and diferential cross sections for both the inclusive and electroweak production of a same-sign W-boson pair in association with two jets (W±W±jj) using 139 fb−1 of proton-proton collision data recorded at a centre-of-mass energy of √s = 13 TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity diference. The measured fducial cross sections for electroweak and inclusive W±W±jj production are 2.92 ± 0.22 (stat.) ± 0.19 (syst.)fb and 3.38±0.22 (stat.)±0.19 (syst.)fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confdence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons H±± that are produced in vector-boson fusion processes and decay into a same-sign W boson pair is performed. The largest deviation from the Standard Model occurs for an H±± mass near 450 GeV, with a global signifcance of 2.5 standard deviations
    corecore