48 research outputs found
Utilising daily diaries to examine oral health experiences associated with dentine hypersensitivity
Background: The current investigation examined the determinants of oral health experiences associated with dentine hypersensitivity using prospective diary methodology.
Methods: Staff and students from a large UK university who had self-diagnosed dentine hypersensitivity completed an online daily diary and text survey for two weeks recording their mood, oral health-related coping behaviours, coping and pain appraisals, pain experiences and functional limitations. Cross sectional and lagged path analyses were employed to examine relationships.
Results: 101 participants took part in the diary study. Participants had a mean age of 26.3 years (range=18-63) and most were female (N=69). Individuals who used more oral health-related coping behaviours predicted and experienced greater levels of pain on subsequent days. Negative mood also predicted worse pain outcomes. The daily diary method provided a useful avenue for investigating variations in oral health experiences and relationships between variables that can fluctuate daily.
Conclusions: Psychological variables such as coping and mood play an important role in the pain experiences of people with dentine hypersensitivity. The study highlights the benefits of using prospective methods to elucidate the experiences of people with oral condition
Up-regulation of cell cycle arrest protein BTG2 correlates with increased overall survival in breast cancer, as detected by immunohistochemistry using tissue microarray
<p>Abstract</p> <p>Background</p> <p>Previous studies have shown that the <it>ADIPOR1</it>, <it>ADORA1</it>, <it>BTG2 </it>and <it>CD46 </it>genes differ significantly between long-term survivors of breast cancer and deceased patients, both in levels of gene expression and DNA copy numbers. The aim of this study was to characterize the expression of the corresponding proteins in breast carcinoma and to determine their correlation with clinical outcome.</p> <p>Methods</p> <p>Protein expression was evaluated using immunohistochemistry in an independent breast cancer cohort of 144 samples represented on tissue microarrays. Fisher's exact test was used to analyze the differences in protein expression between dead and alive patients. We used Cox-regression multivariate analysis to assess whether the new markers predict the survival status of the patients better than the currently used markers.</p> <p>Results</p> <p>BTG2 expression was demonstrated in a significantly lower proportion of samples from dead patients compared to alive patients, both in overall expression (<it>P </it>= 0.026) and cell membrane specific expression (<it>P </it>= 0.013), whereas neither ADIPOR1, ADORA1 nor CD46 showed differential expression in the two survival groups. Furthermore, a multivariate analysis showed that a model containing BTG2 expression in combination with HER2 and Ki67 expression along with patient age performed better than a model containing the currently used prognostic markers (tumour size, nodal status, HER2 expression, hormone receptor status, histological grade, and patient age). Interestingly, BTG2 has previously been described as a tumour suppressor gene involved in cell cycle arrest and p53 signalling.</p> <p>Conclusions</p> <p>We conclude that high-level BTG2 protein expression correlates with prolonged survival in patients with breast carcinoma.</p
Virus Movements on the Plasma Membrane Support Infection and Transmission between Cells
How viruses are transmitted across the mucosal epithelia of the respiratory, digestive, or excretory tracts, and how they spread from cell to cell and cause systemic infections, is incompletely understood. Recent advances from single virus tracking experiments have revealed conserved patterns of virus movements on the plasma membrane, including diffusive motions, drifting motions depending on retrograde flow of actin filaments or actin tail formation by polymerization, and confinement to submicrometer areas. Here, we discuss how viruses take advantage of cellular mechanisms that normally drive the movements of proteins and lipids on the cell surface. A concept emerges where short periods of fast diffusive motions allow viruses to rapidly move over several micrometers. Coupling to actin flow supports directional transport of virus particles during entry and cell-cell transmission, and local confinement coincides with either nonproductive stalling or infectious endocytic uptake. These conserved features of virus–host interactions upstream of infectious entry offer new perspectives for anti-viral interference
Precision medicine driven by cancer systems biology
Molecular insights from genome and systems biology are influencing how cancer is diagnosed and treated. We critically evaluate big data challenges in precision medicine. The melanoma research community has identified distinct subtypes involving chronic sun-induced damage and the mitogen-activated protein kinase driver pathway. In addition, despite low mutation burden, non-genomic mitogen-activated protein kinase melanoma drivers are found in membrane receptors, metabolism, or epigenetic signaling with the ability to bypass central mitogen-activated protein kinase molecules and activating a similar program of mitogenic effectors. Mutation hotspots, structural modeling, UV signature, and genomic as well as non-genomic mechanisms of disease initiation and progression are taken into consideration to identify resistance mutations and novel drug targets. A comprehensive precision medicine profile of a malignant melanoma patient illustrates future rational drug targeting strategies. Network analysis emphasizes an important role of epigenetic and metabolic master regulators in oncogenesis. Co-occurrence of driver mutations in signaling, metabolic, and epigenetic factors highlights how cumulative alterations of our genomes and epigenomes progressively lead to uncontrolled cell proliferation. Precision insights have the ability to identify independent molecular pathways suitable for drug targeting. Synergistic treatment combinations of orthogonal modalities including immunotherapy, mitogen-activated protein kinase inhibitors, epigenetic inhibitors, and metabolic inhibitors have the potential to overcome immune evasion, side effects, and drug resistance