40 research outputs found

    G-CSF Prevents the Progression of Structural Disintegration of White Matter Tracts in Amyotrophic Lateral Sclerosis: A Pilot Trial

    Get PDF
    Background: The hematopoietic protein Granulocyte-colony stimulating factor (G-CSF) has neuroprotective and regenerative properties. The G-CSF receptor is expressed by motoneurons, and G-CSF protects cultured motoneuronal cells from apoptosis. It therefore appears as an attractive and feasible drug candidate for the treatment of amyotrophic lateral sclerosis (ALS). The current pilot study was performed to determine whether treatment with G-CSF in ALS patients is feasible.Methods: Ten patients with definite ALS were entered into a double-blind, placebo-controlled, randomized trial. Patients received either 10 mu g/kg BW G-CSF or placebo subcutaneously for the first 10 days and from day 20 to 25 of the study. Clinical outcome was assessed by changes in the ALS functional rating scale (ALSFRS), a comprehensive neuropsychological test battery, and by examining hand activities of daily living over the course of the study (100 days). The total number of adverse events (AE) and treatment-related AEs, discontinuation due to treatment-related AEs, laboratory parameters including leukocyte, erythrocyte, and platelet count, as well as vital signs were examined as safety endpoints. Furthermore, we explored potential effects of G-CSF on structural cerebral abnormalities on the basis of voxel-wise statistics of Diffusion Tensor Imaging (DTI), brain volumetry, and voxel-based morphometry.Results: Treatment was well-tolerated. No significant differences were found between groups in clinical tests and brain volumetry from baseline to day 100. However, DTI analysis revealed significant reductions of fractional anisotropy (FA) encompassing diffuse areas of the brain when patients were compared to controls. On longitudinal analysis, the placebo group showed significant greater and more widespread decline in FA than the ALS patients treated with G-CSF.Conclusions: Subcutaneous G-CSF treatment in ALS patients appears as feasible approach. Although exploratory analysis of clinical data showed no significant effect, DTI measurements suggest that the widespread and progressive microstructural neural damage in ALS can be modulated by G-CSF treatment. These findings may carry significant implications for further clinical trials on ALS using growth factors

    Identification of human renal cell carcinoma associated genes by suppression subtractive hybridization

    Get PDF
    Renal cell carcinoma (RCC) are frequently chemo- and radiation resistant. Thus, there is a need for identifying biological features of these cells that could serve as alternative therapeutic targets. We performed suppression subtractive hybridization (SSH) on patient-matched normal renal and RCC tissue to identify variably regulated genes. 11 genes were strongly up-regulated or selectively expressed in more than one RCC tissue or cell line. Screening of filters containing cancer-related cDNAs confirmed overexpression of 3 of these genes and 3 additional genes were identified. These 14 differentially expressed genes, only 6 of which have previously been associated with RCC, are related to tumour growth/survival (EGFR, cyclin D1, insulin-like growth factor-binding protein-1 and a MLRQ sub-unit homologue of the NADH:ubiquinone oxidoreductase complex), angiogenesis (vascular endothelial growth factor, endothelial PAS domain protein-1, ceruloplasmin, angiopoietin-related protein 2) and cell adhesion/motility (protocadherin 2, cadherin 6, autotaxin, vimentin, lysyl oxidase and semaphorin G). Since some of these genes were overexpressed in 80–90% of RCC tissues, it is important to evaluate their suitability as therapeutic targets. © 2001 Cancer Research Campaig

    Brain homeostasis: VEGF receptor 1 and 2—two unequal brothers in mind

    Get PDF
    corecore