46 research outputs found

    Tumor-induced STAT3 activation in monocytic myeloid-derived suppressor cells enhances stemness and mesenchymal properties in human pancreatic cancer

    Get PDF
    Pancreatic cancer (PC) mobilizes myeloid cells from the bone marrow to the tumor where they promote tumor growth and proliferation. Cancer stem cells (CSCs) are a population of tumor cells that are responsible for tumor initiation. Aldehyde dehydrogenase-1 activity in PC identifies CSCs, and its activity has been correlated with poor overall prognosis in human PC. Myeloid cells have been shown to impact tumor stemness, but the impact of immunosuppressive tumor-infiltrating granulocytic and monocytic myeloid-derived suppressor cells (Mo-MDSC) on ALDH1(Bright) CSCs and epithelial to mesenchymal transition is not well understood. In this study, we demonstrate that Mo-MDSC (CD11b(+)/Gr1(+)/Ly6G(−)/Ly6C(hi)) significantly increase the frequency of ALDH1(Bright) CSCs in a mouse model of PC. Additionally, there was significant upregulation of genes associated with epithelial to mesenchymal transition. We also found that human PC converts CD14(+) peripheral blood monocytes into Mo-MDSC (CD14(+)/HLA-DR(low/−)) in vitro, and this transformation is dependent on the activation of the STAT3 pathway. In turn, these Mo-MDSC increase the frequency of ALDH1(Bright) CSCs and promote mesenchymal features of tumor cells. Finally, blockade of STAT3 activation reversed the increase in ALDH1(Bright) CSCs. These data suggest that the PC tumor microenvironment transforms monocytes to Mo-MDSC by STAT3 activation, and these cells increase the frequency of ALDH1(Bright) CSCs. Therefore, targeting STAT3 activation may be an effective therapeutic strategy in targeting CSCs in PC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00262-014-1527-x) contains supplementary material, which is available to authorized users

    Prevalence of high-risk human papillomavirus types in Mexican women with cervical intraepithelial neoplasia and invasive carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prevalence of high risk (HR) human papillomavirus (HPV) types in the states of San Luis Potosí (SLP) and Guanajuato (Gto), Mexico, was determined by restriction fragment length-polymorphism (RFLP) analysis on the E6 ~250 bp (E6-250) HR-HPV products amplified from cervical scrapings of 442 women with cervical intraepithelial neoplasia and invasive carcinoma (280 from SLP and 192 from Gto). Fresh cervical scrapings for HPV detection and typing were obtained from all of them and cytological and/or histological diagnoses were performed on 383.</p> <p>Results</p> <p>Low grade intraepithelial squamous lesions (LSIL) were diagnosed in 280 cases (73.1%), high grade intraepithelial squamous lesions (HSIL) in 64 cases (16.7%) and invasive carcinoma in 39 cases (10.2%). In the 437 cervical scrapings containing amplifiable DNA, only four (0.9%) were not infected by HPV, whereas 402 (92.0%) were infected HR-HPV and 31 (7.1%) by low-risk HPV. RFLP analysis of the amplifiable samples identified infections by one HR-HPV type in 71.4%, by two types in 25.9% and by three types in 2.7%. The overall prevalence of HR-HPV types was, in descending order: 16 (53.4%) > 31 (15.6%) > 18 (8.9%) > 35 (5.6) > 52 (5.4%) > 33 (1.2%) > 58 (0.7%) = unidentified types (0.7%); in double infections (type 58 absent in Gto) it was 16 (88.5%) > 31 (57.7%) > 35 (19.2%) > 18 (16.3%) = 52 (16.3%) > 33 (2.8%) = 58 (2.8%) > unidentified types (1.0%); in triple infections (types 33 and 58 absent in both states) it was 16 (100.0%) > 35 (54.5%) > 31 (45.5%) = 52 (45.5%) > 18 (27.3%). Overall frequency of cervical lesions was LSIL (73.1%) > HSIL (16.7%) > invasive cancer (10.2%). The ratio of single to multiple infections was inversely proportional to the severity of the lesions: 2.46 for LSIL, 2.37 for HSIL and 2.15 for invasive cancer. The frequency of HR-HPV types in HSIL and invasive cancer lesions was 16 (55.0%) > 31 (18.6%) > 35 (7.9%) > 52 (7.1%) > 18 (4.3%) > unidentified types (3.6%) > 33 (2.9%) > 58 (0.7%).</p> <p>Conclusion</p> <p>Ninety percent of the women included in this study were infected by HR-HPV, with a prevalence 1.14 higher in Gto. All seven HR-HPV types identifiable with the PCR-RFLP method used circulate in SLP and Gto, and were diagnosed in 99.3% of the cases. Seventy-one percent of HR-HPV infections were due to a single type, 25.9% were double and 2.7% were triple. Overall frequency of lesions was LSIL (73.1%) > HSIL (16.7%) > invasive cancer (10.2%), and the ratio of single to multiple infections was inversely proportional to severity of the lesions: 2.46 for LSIL, 2.37 for HSIL and 2.15 for invasive cancer. The frequency of HR-HPV types found in HSIL and invasive cancer was 16 (55.0%) > 31 (18.6%) > 35 (7.9%) > 52 (7.1%) > 18 (4.3%) > unidentified types (3.6%) > 33 (2.9%) > 58 (0.7%). Since the three predominant types (16, 31 and 18) cause 77.9% of the HR-HPV infections and immunization against type 16 prevents type 31 infections, in this region the efficacy of the prophylactic vaccine against types 16 and 18 would be close to 80%.</p

    Immunogenicity of a Promiscuous T Cell Epitope Peptide Based Conjugate Vaccine against Benzo[a]pyrene: Redirecting Antibodies to the Hapten

    Get PDF
    The prototype polycyclic aromatic hydrocarbon benzo[a]pyrene (B[a]P) is an environmental pollutant and food contaminant of epidemiological importance. To protect against adverse effects of this ubiquitous carcinogen, we developed an immunoprophylactic strategy based on a B[a]P-protein conjugate vaccine to induce B[a]P specific antibodies (Grova et al., Vaccine. 2009;27:4142–51). Here, we investigated in mice the efficacy of B[a]P-peptide conjugates based on promiscuous T cell epitopes (TCE) into further improve this approach. We showed that B[a]P-peptide conjugates induced very different levels of hapten-specific antibodies with variable functional efficacy, depending on the carrier. In some cases peptide carriers induced a more efficient antibody response against B[a]P than tetanus toxoid as a protein carrier, with the capacity to sequester more B[a]P in the blood. Reducing the carrier size to a single TCE can dramatically shift the antibody bias from the carrier to the B[a]P. Conjugates based on the TCE FIGITEL induced the best anti-hapten response and no antibodies against the carrier peptide. Some peptide conjugates increased the selectivity of the antibodies for the activated metabolite 7,8-diol-B[a]P and B[a]P by one or two orders of magnitude. The antibody efficacy was also demonstrated in their ability to sequester B[a]P in the blood and modulate its faecal excretion (15–56%). We further showed that pre-existing immunity to the carrier from which the TCE was derived did not reduce the immunogenicity of the peptide conjugate. In conclusion, we showed that a vaccination against B[a]P using promiscuous TCEs of tetanus toxin as carriers is feasible even in case of a pre-existing immunity to the toxoid and that some TCE epitopes dramatically redirect the antibody response to the hapten. Further studies to demonstrate a long-term protection of an immunoprophylactic immunisation against B[a]P are warranted

    Induction of the interleukin 6/ signal transducer and activator of transcription pathway in the lungs of mice sub-chronically exposed to mainstream tobacco smoke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tobacco smoking is associated with lung cancer and other respiratory diseases. However, little is known about the global molecular changes that precede the appearance of clinically detectable symptoms. In this study, the effects of mainstream tobacco smoke (MTS) on global transcription in the mouse lung were investigated.</p> <p>Methods</p> <p>Male C57B1/CBA mice were exposed to MTS from two cigarettes daily, 5 days/week for 6 or 12 weeks. Mice were sacrificed immediately, or 6 weeks following the last cigarette. High density DNA microarrays were used to characterize global gene expression changes in whole lung. Microarray results were validated by Quantitative real-time RT-PCR. Further analysis of protein synthesis and function was carried out for a select set of genes by ELISA and Western blotting.</p> <p>Results</p> <p>Globally, seventy nine genes were significantly differentially expressed following the exposure to MTS. These genes were associated with a number of biological processes including xenobiotic metabolism, redox balance, oxidative stress and inflammation. There was no differential gene expression in mice exposed to smoke and sampled 6 weeks following the last cigarette. Moreover, cluster analysis demonstrated that these samples clustered alongside their respective controls. We observed simultaneous up-regulation of <it>interleukin 6 </it>(<it>IL-6</it>) and its antagonist, <it>suppressor of cytokine signalling </it>(<it>SOCS3</it>) mRNA following 12 weeks of MTS exposure. Analysis by ELISA and Western blotting revealed a concomitant increase in total IL-6 antigen levels and its downstream targets, including phosphorylated signal transducer and activator of transcription 3 (Stat3), basal cell-lymphoma extra large (BCL-XL) and myeloid cell leukemia 1 (MCL-1) protein, in total lung tissue extracts. However, in contrast to gene expression, a subtle decrease in total SOCS3 protein was observed after 12 weeks of MTS exposure.</p> <p>Conclusion</p> <p>Global transcriptional analysis identified a set of genes responding to MTS exposure in mouse lung. These genes returned to basal levels following smoking cessation, providing evidence to support the benefits of smoking cessation. Detailed analyses were undertaken for IL-6 and its associated pathways. Our results provide further insight into the role of these pathways in lung injury and inflammation induced by MTS.</p

    Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities

    Get PDF
    Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship
    corecore