926 research outputs found

    Identification of Class I HLA T Cell Control Epitopes for West Nile Virus

    Get PDF
    The recent West Nile virus (WNV) outbreak in the United States underscores the importance of understanding human immune responses to this pathogen. Via the presentation of viral peptide ligands at the cell surface, class I HLA mediate the T cell recognition and killing of WNV infected cells. At this time, there are two key unknowns in regards to understanding protective T cell immunity: 1) the number of viral ligands presented by the HLA of infected cells, and 2) the distribution of T cell responses to these available HLA/viral complexes. Here, comparative mass spectroscopy was applied to determine the number of WNV peptides presented by the HLA-A*11:01 of infected cells after which T cell responses to these HLA/WNV complexes were assessed. Six viral peptides derived from capsid, NS3, NS4b, and NS5 were presented. When T cells from infected individuals were tested for reactivity to these six viral ligands, polyfunctional T cells were focused on the GTL9 WNV capsid peptide, ligands from NS3, NS4b, and NS5 were less immunogenic, and two ligands were largely inert, demonstrating that class I HLA reduce the WNV polyprotein to a handful of immune targets and that polyfunctional T cells recognize infections by zeroing in on particular HLA/WNV epitopes. Such dominant HLA/peptide epitopes are poised to drive the development of WNV vaccines that elicit protective T cells as well as providing key antigens for immunoassays that establish correlates of viral immunity. © 2013 Kaabinejadian et al

    Network model of immune responses reveals key effectors to single and co-infection dynamics by a respiratory bacterium and a gastrointestinal helminth

    Get PDF
    Co-infections alter the host immune response but how the systemic and local processes at the site of infection interact is still unclear. The majority of studies on co-infections concentrate on one of the infecting species, an immune function or group of cells and often focus on the initial phase of the infection. Here, we used a combination of experiments and mathematical modelling to investigate the network of immune responses against single and co-infections with the respiratory bacterium Bordetella bronchiseptica and the gastrointestinal helminth Trichostrongylus retortaeformis. Our goal was to identify representative mediators and functions that could capture the essence of the host immune response as a whole, and to assess how their relative contribution dynamically changed over time and between single and co-infected individuals. Network-based discrete dynamic models of single infections were built using current knowledge of bacterial and helminth immunology; the two single infection models were combined into a co-infection model that was then verified by our empirical findings. Simulations showed that a T helper cell mediated antibody and neutrophil response led to phagocytosis and clearance of B. bronchiseptica from the lungs. This was consistent in single and co-infection with no significant delay induced by the helminth. In contrast, T. retortaeformis intensity decreased faster when co-infected with the bacterium. Simulations suggested that the robust recruitment of neutrophils in the co-infection, added to the activation of IgG and eosinophil driven reduction of larvae, which also played an important role in single infection, contributed to this fast clearance. Perturbation analysis of the models, through the knockout of individual nodes (immune cells), identified the cells critical to parasite persistence and clearance both in single and co-infections. Our integrated approach captured the within-host immuno-dynamics of bacteria-helminth infection and identified key components that can be crucial for explaining individual variability between single and co-infections in natural populations

    Quantitative Trait Loci Associated with the Immune Response to a Bovine Respiratory Syncytial Virus Vaccine

    Get PDF
    Infectious disease is an important problem for animal breeders, farmers and governments worldwide. One approach to reducing disease is to breed for resistance. This linkage study used a Charolais-Holstein F2 cattle cross population (n = 501) which was genotyped for 165 microsatellite markers (covering all autosomes) to search for associations with phenotypes for Bovine Respiratory Syncytial Virus (BRSV) specific total-IgG, IgG1 and IgG2 concentrations at several time-points pre- and post-BRSV vaccination. Regions of the bovine genome which influenced the immune response induced by BRSV vaccination were identified, as well as regions associated with the clearance of maternally derived BRSV specific antibodies. Significant positive correlations were detected within traits across time, with negative correlations between the pre- and post-vaccination time points. The whole genome scan identified 27 Quantitative Trait Loci (QTL) on 13 autosomes. Many QTL were associated with the Thymus Helper 1 linked IgG2 response, especially at week 2 following vaccination. However the most significant QTL, which reached 5% genome-wide significance, was on BTA 17 for IgG1, also 2 weeks following vaccination. All animals had declining maternally derived BRSV specific antibodies prior to vaccination and the levels of BRSV specific antibody prior to vaccination were found to be under polygenic control with several QTL detected

    A predictive score to identify hospitalized patients' risk of discharge to a post-acute care facility

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early identification of patients who need post-acute care (PAC) may improve discharge planning. The purposes of the study were to develop and validate a score predicting discharge to a post-acute care (PAC) facility and to determine its best assessment time.</p> <p>Methods</p> <p>We conducted a prospective study including 349 (derivation cohort) and 161 (validation cohort) consecutive patients in a general internal medicine service of a teaching hospital. We developed logistic regression models predicting discharge to a PAC facility, based on patient variables measured on admission (day 1) and on day 3. The value of each model was assessed by its area under the receiver operating characteristics curve (AUC). A simple numerical score was derived from the best model, and was validated in a separate cohort.</p> <p>Results</p> <p>Prediction of discharge to a PAC facility was as accurate on day 1 (AUC: 0.81) as on day 3 (AUC: 0.82). The day-3 model was more parsimonious, with 5 variables: patient's partner inability to provide home help (4 pts); inability to self-manage drug regimen (4 pts); number of active medical problems on admission (1 pt per problem); dependency in bathing (4 pts) and in transfers from bed to chair (4 pts) on day 3. A score ≥ 8 points predicted discharge to a PAC facility with a sensitivity of 87% and a specificity of 63%, and was significantly associated with inappropriate hospital days due to discharge delays. Internal and external validations confirmed these results.</p> <p>Conclusion</p> <p>A simple score computed on the 3rd hospital day predicted discharge to a PAC facility with good accuracy. A score > 8 points should prompt early discharge planning.</p

    Boolean network simulations for life scientists

    Get PDF
    Modern life sciences research increasingly relies on computational solutions, from large scale data analyses to theoretical modeling. Within the theoretical models Boolean networks occupy an increasing role as they are eminently suited at mapping biological observations and hypotheses into a mathematical formalism. The conceptual underpinnings of Boolean modeling are very accessible even without a background in quantitative sciences, yet it allows life scientists to describe and explore a wide range of surprisingly complex phenomena. In this paper we provide a clear overview of the concepts used in Boolean simulations, present a software library that can perform these simulations based on simple text inputs and give three case studies. The large scale simulations in these case studies demonstrate the Boolean paradigms and their applicability as well as the advanced features and complex use cases that our software package allows. Our software is distributed via a liberal Open Source license and is freely accessible fro

    Pharmacokinetics of Teriparatide (rhPTH[1–34]) and Calcium Pharmacodynamics in Postmenopausal Women with Osteoporosis

    Get PDF
    Teriparatide (rhPTH[1–34]) affects calcium metabolism in a pattern consistent with the known actions of endogenous parathyroid hormone (PTH). This report describes the pharmacokinetics and resulting serum calcium response to teriparatide in postmenopausal women with osteoporosis. Pharmacokinetic samples for this analysis were obtained from 360 women who participated in the Fracture Prevention Trial. Postmenopausal women with osteoporosis received daily subcutaneous injections of either teriparatide 20 μg (4.86 μmol) or placebo, median 21 months’ treatment. Serum teriparatide and calcium concentrations were measured throughout the study. An indirect-response model was developed to describe the pharmacokinetic–pharmacodynamic relationship between teriparatide concentrations and serum calcium response. The pharmacokinetics of teriparatide were characterized by rapid absorption (maximum concentration achieved within 30 min) and rapid elimination (half-life of 1 h), resulting in a total duration of exposure to the peptide of approximately 4 h. Teriparatide transiently increased serum calcium, with the maximum effect observed at approximately 4.25 h (median increase 0.4 mg/dl [0.1 mmol/l]). Calcium concentrations returned to predose levels by 16–24 h after each dose. Persistent hypercalcemia was not observed; one teriparatide 20 μg-treated patient had a predose serum calcium value above the normal range but <11.0 mg/dl (2.75 mmol/l). Following once-daily subcutaneous administration, teriparatide produces a modest but transient increase in serum calcium, consistent with the known effects of endogenous PTH on mineral metabolism. The excursion in serum calcium is brief, due to the short length of time that teriparatide concentrations are elevated

    Neuromonitoring in neonatal critical care part II: extremely premature infants and critically ill neonates

    Get PDF
    Abstract: Neonatal intensive care has expanded from cardiorespiratory care to a holistic approach emphasizing brain health. To best understand and monitor brain function and physiology in the neonatal intensive care unit (NICU), the most commonly used tools are amplitude-integrated EEG, full multichannel continuous EEG, and near-infrared spectroscopy. Each of these modalities has unique characteristics and functions. While some of these tools have been the subject of expert consensus statements or guidelines, there is no overarching agreement on the optimal approach to neuromonitoring in the NICU. This work reviews current evidence to assist decision making for the best utilization of these neuromonitoring tools to promote neuroprotective care in extremely premature infants and in critically ill neonates. Neuromonitoring approaches in neonatal encephalopathy and neonates with possible seizures are discussed separately in the companion paper. Impact: For extremely premature infants, NIRS monitoring has a potential role in individualized brain-oriented care, and selective use of aEEG and cEEG can assist in seizure detection and prognostication.For critically ill neonates, NIRS can monitor cerebral perfusion, oxygen delivery, and extraction associated with disease processes as well as respiratory and hypodynamic management. Selective use of aEEG and cEEG is important in those with a high risk of seizures and brain injury.Continuous multimodal monitoring as well as monitoring of sleep, sleep–wake cycling, and autonomic nervous system have a promising role in neonatal neurocritical care

    Recommendations for and compliance with social restrictions during implementation of school closures in the early phase of the influenza A (H1N1) 2009 outbreak in Melbourne, Australia

    Get PDF
    Background Localized reactive school and classroom closures were implemented as part of a suite of pandemic containment measures during the initial response to influenza A (H1N1) 2009 in Melbourne, Australia. Infected individuals, and those who had been in close contact with a case, were asked to stay in voluntary home quarantine and refrain from contact with visitors for seven days from the date of symptom onset or exposure to an infected person. Oseltamivir (Tamiflu&reg;) was available for treatment or prophylaxis. Methods We surveyed affected families through schools involved in the closures. Analyses of responses were descriptive. We characterized recommendations made to case and contact households and quantified adherence to guidelines and antiviral therapy. Results Of the 314 respondent households, 51 contained a confirmed case. The prescribed quarantine period ranged from 1-14 days, reflecting logistic difficulties in reactive implementation relative to the stated guidelines. Household-level compliance with the requirement to stay at home was high (84.5%, 95% CI 79.3,88.5) and contact with children outside the immediate family infrequent. Conclusions Levels of compliance with recommendations in our sample were high compared with other studies, likely due to heightened public awareness of a newly introduced virus of uncertain severity. The variability of reported recommendations highlighted the difficulties inherent in implementing a targeted reactive strategy, such as that employed in Melbourne, on a large scale during a public health emergency. This study emphasizes the need to understand how public health measures are implemented when seeking to evaluate their effectiveness
    corecore