262 research outputs found
Characteristics and outcome of patients with newly diagnosed advanced or metastatic lung cancer admitted to intensive care units (ICUs)
BACKGROUND: Although patients with advanced or metastatic lung cancer have poor prognosis, admission to the ICU for management of life-threatening complications has increased over the years. Patients with newly diagnosed lung cancer appear as good candidates for ICU admission, but more robust information to assist decisions is lacking. The aim of our study was to evaluate the prognosis of newly diagnosed unresectable lung cancer patients. METHODS: A retrospective multicentric study analyzed the outcome of patients admitted to the ICU with a newly diagnosed lung cancer (diagnosis within the month) between 2010 and 2013. RESULTS: Out of the 100 patients, 30 had small cell lung cancer (SCLC) and 70 had non-small cell lung cancer. (Thirty patients had already been treated with oncologic treatments.) Mechanical ventilation (MV) was performed for 81 patients. Seventeen patients received emergency chemotherapy during their ICU stay. ICU, hospital, 3- and 6-month mortality were, respectively, 47, 60, 67 and 71%. Hospital mortality was 60% when invasive MV was used alone, 71% when MV and vasopressors were needed and 83% when MV, vasopressors and hemodialysis were required. In multivariate analysis, hospital mortality was associated with metastatic disease (OR 4.22 [1.4-12.4]; p = 0.008), need for invasive MV (OR 4.20 [1.11-16.2]; p = 0.030), while chemotherapy in ICU was associated with survival (OR 0.23, [0.07-0.81]; p = 0.020). CONCLUSION: This study shows that ICU management can be appropriate for selected newly diagnosed patients with advanced lung cancer, and chemotherapy might improve outcome for patients with SCLC admitted for cancer-related complications. Nevertheless, tumors' characteristics, numbers and types of organ dysfunction should be taken into account in the decisional process before admitting these patients in ICU.Peer reviewe
Analyzing and Biasing Simulations with PLUMED
This chapter discusses how the PLUMED plugin for molecular dynamics can be used to analyze and bias molecular dynamics trajectories. The chapter begins by introducing the notion of a collective variable and by then explaining how the free energy can be computed as a function of one or more collective variables. A number of practical issues mostly around periodic boundary conditions that arise when these types of calculations are performed using PLUMED are then discussed. Later parts of the chapter discuss how PLUMED can be used to perform enhanced sampling simulations that introduce simulation biases or multiple replicas of the system and Monte Carlo exchanges between these replicas. This section is then followed by a discussion on how free-energy surfaces and associated error bars can be extracted from such simulations by using weighted histogram and block averaging techniques
Actigraph Accelerometer-Defined Boundaries for Sedentary Behaviour and Physical Activity Intensities in 7 Year Old Children
Background: Accurate objective assessment of sedentary and physical activity behaviours during childhood is integral to the understanding of their relation to later health outcomes, as well as to documenting the frequency and distribution of physical activity within a population.Purpose: To calibrate the Actigraph GT1M accelerometer, using energy expenditure (EE) as the criterion measure, to define thresholds for sedentary behaviour and physical activity categories suitable for use in a large scale epidemiological study in young children.Methods: Accelerometer-based assessments of physical activity (counts per minute) were calibrated against EE measures (kcal.kg(-1).hr(-1)) obtained over a range of exercise intensities using a COSMED K4b(2) portable metabolic unit in 53 seven-year-old children. Children performed seven activities: lying down viewing television, sitting upright playing a computer game, slow walking, brisk walking, jogging, hopscotch and basketball. Threshold count values were established to identify sedentary behaviour and light, moderate and vigorous physical activity using linear discriminant analysis (LDA) and evaluated using receiver operating characteristic (ROC) curve analysis.Results: EE was significantly associated with counts for all non-sedentary activities with the exception of jogging. Threshold values for accelerometer counts (counts. minute(-1)) were = 3841 for light, moderate and vigorous physical activity respectively. The area under the ROC curves for discrimination of sedentary behaviour and vigorous activity were 0.98. Boundaries for light and moderate physical activity were less well defined (0.61 and 0.60 respectively). Sensitivity and specificity were higher for sedentary (99% and 97%) and vigorous (95% and 91%) than for light (60% and 83%) and moderate (61% and 76%) thresholds.Conclusion: The accelerometer cut points established in this study can be used to classify sedentary behaviour and to distinguish between light, moderate and vigorous physical activity in children of this age
The tyrosine kinase inhibitor ZD6474 inhibits tumour growth in an intracerebral rat glioma model
Malignant glioma is characterised by extensive neovascularisation, principally influenced by vascular endothelial growth factor (VEGF). ZD6474 is a potent inhibitor of VEGF-R2 tyrosine kinase activity, but with additional inhibitory effects on other growth factors. In this study, we have investigated the effects of ZD6474 with regard to tumour growth, neovascularisation, proliferation and apoptosis in the intracerebral rat glioma model, BT4C. ZD6474 (50 and 100 mg kg−1) was given as a daily oral gavage. Animals were killed on day 19 and tumour volume was measured. Sections were stained for factor VIII, Ki-67 and for apoptosis. The ability of ZD6474 to inhibit cell growth directly was examined in vitro, using the glioma cell line BT4C and the transformed rat brain endothelial cell line RBE4. Cell growth was analysed with fluorometric microculture cytotoxicity assay to quantify the cytotoxic effects. ZD6474 significantly decreased tumour volume compared to controls. Microvascular density increased after treatment with ZD6474, and tumour cell proliferation index was reduced. There was also an increase in tumour cell apoptosis. In vitro, the growth of both cell lines was significantly reduced. The results reported justify further experimental investigations concerning the effects of ZD6474 in malignant glioma alone or in combination with other modalities
Colocalization of coregulated genes: a steered molecular dynamics study of human chromosome 19
The connection between chromatin nuclear organization and gene activity is vividly illustrated by the observation that transcriptional coregulation of certain genes appears to be directly influenced by their spatial proximity. This fact poses the more general question of whether it is at all feasible that the numerous genes that are coregulated on a given chromosome, especially those at large genomic distances, might become proximate inside the nucleus. This problem is studied here using steered molecular dynamics simulations in order to enforce the colocalization of thousands of knowledge-based gene sequences on a model for the gene-rich human chromosome 19. Remarkably, it is found that most, ~80% gene pairs can be brought simultaneously into contact. This is made possible by the low degree of intra-chromosome entanglement and the large number of cliques in the gene coregulatory network. A clique is a set of genes coregulated all together as a group. The constrained conformations for the model chromosome 19 are further shown to be organised in spatial macrodomains that are similar to those inferred from recent HiC measurements. The findings indicate that gene coregulation and colocalization are largely compatible and that this relationship can be exploited to draft the overall spatial organization of the chromosome in vivo. The more general validity and implications of these findings could be investigated by applying to other eukaryotic chromosomes the general and transferable computational strategy introduced here
Hi-C-constrained physical models of human chromosomes recover functionally-related properties of genome organization
Combining genome-wide structural models with phenomenological data is at the forefront of efforts to understand the organizational principles regulating the human genome. Here, we use chromosome-chromosome contact data as knowledge-based constraints for large-scale three-dimensional models of the human diploid genome. The resulting models remain minimally entangled and acquire several functional features that are observed in vivo and that were never used as input for the model. We find, for instance, that gene-rich, active regions are drawn towards the nuclear center, while gene poor and lamina associated domains are pushed to the periphery. These and other properties persist upon adding local contact constraints, suggesting their compatibility with non-local constraints for the genome organization. The results show that suitable combinations of data analysis and physical modelling can expose the unexpectedly rich functionally-related properties implicit in chromosome-chromosome contact data. Specific directions are suggested for further developments based on combining experimental data analysis and genomic structural modelling
The inverted free energy landscape of an intrinsically disordered peptide by simulations and experiments
The free energy landscape theory has been very successful in rationalizing the folding behaviour of globular proteins, as this representation provides intuitive information on the number of states involved in the folding process, their populations and pathways of interconversion. We extend here this formalism to the case of the A\u3b240 peptide, a 40-residue intrinsically disordered protein fragment associated with Alzheimer's disease. By using an advanced sampling technique that enables free energy calculations to reach convergence also in the case of highly disordered states of proteins, we provide a precise structural characterization of the free energy landscape of this peptide. We find that such landscape has inverted features with respect to those typical of folded proteins. While the global free energy minimum consists of highly disordered structures, higher free energy regions correspond to a large variety of transiently structured conformations with secondary structure elements arranged in several different manners, and are not separated from each other by sizeable free energy barriers. From this peculiar structure of the free energy landscape we predict that this peptide should become more structured and not only more compact, with increasing temperatures, and we show that this is the case through a series of biophysical measurements
- …