88 research outputs found

    Smart Shopping Trolley

    Get PDF
    Microcontroller and RFID based design, has acquired the status of most happening field in shopping market. This is highly specialized field that has the power of integrating large number of components on shopping trolley. Nowadays when we are going to the shopping mall, we have to first take the trolley and then proceed to products lines. Then we put items in the trolley which we intend to purchase. After all the shopping we moved toward the cash counters. And wait in the long queues for payment. After paying money we have to check out the shopping mall. In order to overcome the disadvantage such as waiting for payment as well as reduce wastage of time, we are developing fully automated “SMART SHOPPING TROLLEY” system. In this system, when you take the trolley for shopping and putting the products in the trolley which you wish to purchase, the sensors which are mounted on the trolley read the information of the product and directly send to the main server. And there is no need to waiting in the long queues. You can directly do your payment as your full information is already to the counter

    Real Time Packet Classification and Analysis based on Bloom Filter for Longest Prefix Matching

    Get PDF
    Packet classification is an enabling function in network and security systems; hence, hardware-based solutions, such as TCAM (Ternary Content Addressable Memory), have been extensively adopted for high-performance systems. With the expeditious improvement of hardware architectures and burgeoning popularity of multi-core multi-threaded processors, decision-tree based packet classification algorithms such as HiCuts and HyperCuts are grabbing considerable attention, outstanding to their flexibility in satisfying miscellaneous industrial requirements for network and security systems. For high classification speed, these algorithms internally use decision trees, whose size increases exponentially with the ruleset size; consequently, they cannot be used with a large rulesets. However, these decision tree algorithms involve complicated heuristics for concluding the number of cuts and fields. Moreover, ?xed interval-based cutting not depicting the actual space that each rule covers is defeasible and terminates in a huge storage requirement. We propose a new packet classification that simultaneously supports high scalability and fast classification performance by using Bloom Filter. Bloom uses hash table as a data structure which is an efficient data structure for membership queries to avoid lookup in some subsets which contain no matching rules and to sustain high throughput by using Longest Prefix Matching (LPM) algorithm. Hash table data structure which improves the performance by providing better boundaries on the hash collisions and memory accesses per search. The proposed classification algorithm also shows good scalability, high classification speed, irrespective of the number of rules. Performance analysis results show that the proposed algorithm enables network and security systems to support heavy traffic in the most effective manner

    Investigating the Mitochondrial Permeability Transition Pore in Disease Phenotypes and Drug Screening

    Get PDF
    Mitochondria act as 'sinks' for Ca2+ signaling, with mitochondrial Ca2+ uptake linking physiological stimuli to increased ATP production. However, mitochondrial Ca2+ overload can induce a cellular catastrophe by opening of the mitochondrial permeability transition pore (mPTP). This pore is a large conductance pathway in the inner mitochondrial membrane that causes bioenergetic collapse and appears to represent a final common path to cell death in many diseases. The role of the mPTP as a determinant of disease outcome is best established in ischemia/reperfusion injury in the heart, brain, and kidney, and it is also implicated in neurodegenerative disorders and muscular dystrophies. As the probability of pore opening can be modulated by drugs, it represents a useful pharmacological target for translational research in drug discovery. Described in this unit is a protocol utilizing isolated mitochondria to quantify this phenomenon and to develop a high-throughput platform for phenotypic screens for Ca2+ dyshomeostasis

    An A3P approach towards Image Privacy on Social Sites

    Get PDF
    Usage of social media’s has been considerably increasing in today’s world which enables the user to share their personal information like images with other users. This improved technology leads to privacy desecration where the users can share large number of images across the network. To provide security for the information, we put forward this paper consisting Adaptive Privacy Policy Prediction (A3P) framework to help users create security measures for their images. The role of images and its metadata are studied as a measure of user’s privacy preferences. The Framework defines the best privacy policy for the uploaded images. It includes an Image classification framework for association of images with similar policies and a policy prediction technique to automatically generate a privacy policy for user-uploaded images

    Review Paper-Social networking with protecting sensitive labels in data Anonymization

    Get PDF
    The use of social network sites goes on increasing such as facebook, twitter, linkedin, live journal social network and wiki vote network. By using this, users find that they can obtain more and more useful information such as the user performance, private growth, dispersal of disease etc. It is also important that users private information should not get disclose. Thus, Now a days it is important to protect users privacy and utilization of social network data are challenging. Most of developer developed privacy models such as K-anonymity for protecting node or vertex reidentification in structure information. Users privacy models get forced by other user, if a group of node largely share the same sensitive labels then other users easily find out one’s data ,so that structure anonymization method is not purely protected. There are some previous approaches such as edge editing or node clustering .Here structural information as well as sensitive labels of individuals get considered using K-degree l-deversityanonymity model. The new approach in anonymization methodology is adding noise nodes. By considering the least distortion to graph properties,the development of new algorithm using noise nodes into original graph. Most important it will provide an analysis of no.of noise nodes added and their impact on important graph property

    Database Tampering Monitoring System to Enhance Security

    Get PDF
    Nowadays, usage of internet has increased for various purposes like online shopping, online transaction, internet banking, etc. Almost everything is done online. With this increased usage of internet, websites are prone to attacks. Security system is nothing but an intrusion detection system (IDS) that models the network behavior of user sessions. It protects both the front-end web server as well as back-end database. It monitors both web and subsequent database requests. So, it is possible to identify attacks that independent IDS would not be able to identify. Our contribution is to find leaked data which is done by hacker. Next steps to detect the different attacks for preventing unauthorized access users

    Impaired cellular bioenergetics caused by GBA1 depletion sensitizes neurons to calcium overload

    Get PDF
    Heterozygous mutations of the lysosomal enzyme glucocerebrosidase (GBA1) represent the major genetic risk for Parkinson’s disease (PD), while homozygous GBA1 mutations cause Gaucher disease, a lysosomal storage disorder, which may involve severe neurodegeneration. We have previously demonstrated impaired autophagy and proteasomal degradation pathways and mitochondrial dysfunction in neurons from GBA1 knockout (gba1^{-/-}) mice. We now show that stimulation with physiological glutamate concentrations causes pathological [Ca^{2+}]_{c} esponses and delayed calcium deregulation, collapse of mitochondrial membrane potential and an irreversible fall in the ATP/ADP ratio. Mitochondrial Ca^{2+} uptake was reduced in gba1^{−/−} cells as was expression of the mitochondrial calcium uniporter. The rate of free radical generation was increased in gba1^{−/−} neurons. Behavior of gba1^{+/−} neurons was similar to gba1^{−/−} in terms of all variables, consistent with a contribution of these mechanisms to the pathogenesis of PD. These data signpost reduced bioenergetic capacity and [Ca^{2+}]_{c} dysregulation as mechanisms driving neurodegeneration

    Polymerogenic neuroserpin causes mitochondrial alterations and activates NFκB but not the UPR in a neuronal model of neurodegeneration FENIB

    Get PDF
    The neurodegenerative condition FENIB (familiar encephalopathy with neuroserpin inclusion bodies) is caused by heterozygous expression of polymerogenic mutant neuroserpin (NS), with polymer deposition within the endoplasmic reticulum (ER) of neurons. We generated transgenic neural progenitor cells (NPCs) from mouse fetal cerebral cortex stably expressing either the control protein GFP or human wild type, polymerogenic G392E or truncated (delta) NS. This cellular model makes it possible to study the toxicity of polymerogenic NS in the appropriated cell type by in vitro differentiation to neurons. Our previous work showed that expression of G392E NS in differentiated NPCs induced an adaptive response through the upregulation of several genes involved in the defence against oxidative stress, and that pharmacological reduction of the antioxidant defences by drug treatments rendered G392E NS neurons more susceptible to apoptosis than control neurons. In this study, we assessed mitochondrial distribution and found a higher percentage of perinuclear localisation in G392E NS neurons, particularly in those containing polymers, a phenotype that was enhanced by glutathione chelation and rescued by antioxidant molecules. Mitochondrial membrane potential and contact sites between mitochondria and the ER were reduced in neurons expressing the G392E mutation. These alterations were associated with a pattern of ER stress that involved the ER overload response but not the unfolded protein response. Our results suggest that intracellular accumulation of NS polymers affects the interaction between the ER and mitochondria, causing mitochondrial alterations that contribute to the neuronal degeneration seen in FENIB patients

    Effect of transforming growth factor-β2 on biological regulation of multilayer primary chondrocyte culture

    Get PDF
    YesCytokines are extremely potent biomolecules that regulate cellular functions and play multiple roles in initiation and inhibition of disease. These highly specialised macromolecules are actively involved in control of cellular proliferation, apoptosis, cell migration and adhesion. This work, investigates the effect of transforming growth factor-beta2 (TGF-β2) on the biological regulation of chondrocyte and the repair of a created model wound on a multilayer culture system. Also the effect of this cytokine on cell length, proliferation, and cell adhesion has been investigated. Chondrocytes isolated from knee joint of rats and cultured at 4 layers. Each layer consisted of 2 × 105 cells/ml with and without TGF-β2. The expression of mRNA and protein levels of TGF-β receptors and Smad1, 3, 4, and 7 have been analysed by RT-PCR and western blot analysis. The effect of different supplementations in chondrocyte cell proliferation, cell length, adhesion, and wound repair was statistically analysed by One-way ANOVA test. Our results showed that the TGFβ2 regulates mRNA levels of its own receptors, and of Smad3 and Smad7. Also the TGF-β2 caused an increase in chondrocyte cell length, but decreased its proliferation rate and the wound healing process. TGF-β2 also decreased cell adhesion ability to the surface of the culture flask. Since, TGF-β2 increased the cell size, but showed negative effect on cell proliferation and adhesion of CHC, the effect of manipulated TGF-β2 with other growth factors and/or proteins needs to be investigated to finalize the utilization of this growth factor and design of scaffolding in treatment of different types of arthritis

    The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review.

    Get PDF
    BACKGROUND: The management of articular cartilage defects presents many clinical challenges due to its avascular, aneural and alymphatic nature. Bone marrow stimulation techniques, such as microfracture, are the most frequently used method in clinical practice however the resulting mixed fibrocartilage tissue which is inferior to native hyaline cartilage. Other methods have shown promise but are far from perfect. There is an unmet need and growing interest in regenerative medicine and tissue engineering to improve the outcome for patients requiring cartilage repair. Many published reviews on cartilage repair only list human clinical trials, underestimating the wealth of basic sciences and animal studies that are precursors to future research. We therefore set out to perform a systematic review of the literature to assess the translation of stem cell therapy to explore what research had been carried out at each of the stages of translation from bench-top (in vitro), animal (pre-clinical) and human studies (clinical) and assemble an evidence-based cascade for the responsible introduction of stem cell therapy for cartilage defects. This review was conducted in accordance to PRISMA guidelines using CINHAL, MEDLINE, EMBASE, Scopus and Web of Knowledge databases from 1st January 1900 to 30th June 2015. In total, there were 2880 studies identified of which 252 studies were included for analysis (100 articles for in vitro studies, 111 studies for animal studies; and 31 studies for human studies). There was a huge variance in cell source in pre-clinical studies both of terms of animal used, location of harvest (fat, marrow, blood or synovium) and allogeneicity. The use of scaffolds, growth factors, number of cell passages and number of cells used was hugely heterogeneous. SHORT CONCLUSIONS: This review offers a comprehensive assessment of the evidence behind the translation of basic science to the clinical practice of cartilage repair. It has revealed a lack of connectivity between the in vitro, pre-clinical and human data and a patchwork quilt of synergistic evidence. Drivers for progress in this space are largely driven by patient demand, surgeon inquisition and a regulatory framework that is learning at the same pace as new developments take place
    corecore