277 research outputs found

    A review of physical supply and EROI of fossil fuels in China

    Get PDF
    This paper reviews China’s future fossil fuel supply from the perspectives of physical output and net energy output. Comprehensive analyses of physical output of fossil fuels suggest that China’s total oil production will likely reach its peak, at about 230 Mt/year (or 9.6 EJ/year), in 2018; its total gas production will peak at around 350 Bcm/year (or 13.6 EJ/year) in 2040, while coal production will peak at about 4400 Mt/year (or 91.9 EJ/year) around 2020 or so. In terms of the forecast production of these fuels, there are significant differences among current studies. These differences can be mainly explained by different ultimately recoverable resources assumptions, the nature of the models used, and differences in the historical production data. Due to the future constraints on fossil fuels production, a large gap is projected to grow between domestic supply and demand, which will need to be met by increasing imports. Net energy analyses show that both coal and oil and gas production show a steady declining trend of EROI (energy return on investment) due to the depletion of shallow-buried coal resources and conventional oil and gas resources, which is generally consistent with the approaching peaks of physical production of fossil fuels. The peaks of fossil fuels production, coupled with the decline in EROI ratios, are likely to challenge the sustainable development of Chinese society unless new abundant energy resources with high EROI values can be found

    A Novel Structural Assessment Technique to Prevent Damaged FRP-Wrapped Concrete Bridge Piers from Collapse

    Get PDF
    Repairing deteriorated concrete bridge piers using externally wrapped fiber reinforced polymer (FRP) composites have been proven as an effective approach. This technique has also been applied to low-rise building structures. Failures in FRP-wrapped concrete structures may occur by flexural failures of critical sections or by debonding of FRP plate from the concrete substrate. Debonding in the FRP/adhesive/concrete interface region may cause a significant decrease in member capacity leading to a premature failure of the system. In this chapter, a novel structural assessment technique aiming at inspecting the near-surface FRP debonding and concrete cracking of damaged FRP-wrapped concrete bridge piers to prevent the structures from collapse is presented. In the first part of this chapter, failure mechanisms of FRP-wrapped concrete systems are briefly discussed. The second part of this chapter introduces a novel structural assessment technique in which far-field airborne radar is applied. In this development, emphasis is placed on inspection of debonding in glass FRP (GFRP)-wrapped concrete cylinders, while the technique is also applicable to beams and slabs with bonded GFRP composites. Physical radar measurements on laboratory specimens with structural damages were conducted and used for validating the technique. Processed experimental measurements have shown promising results for the future application of the technique. Finally, research findings and issues are summarized.National Science Foundation (U.S.) (Grant CMS-0324607)Lincoln Laborator

    Clinical characteristics of the autumn-winter type scrub typhus cases in south of Shandong province, northern China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Before 1986, scrub typhus was only found endemic in southern China. Because human infections typically occur in the summer, it is called "summer type". During the autumn-winter period of 1986, a new type of scrub typhus was identified in Shandong and northern Jiangsu province of northern China. This newly recognized scrub typhus was subsequently reported in many areas of northern China and was then called "autumn-winter type". However, clinical characteristics of associated cases have not been reported.</p> <p>Methods</p> <p>From 1995 to 2006, all suspected scrub typhus cases in five township hospitals of Feixian county, Shandong province were enrolled. Indirect immunofluorescent assay (IFA) was used as confirmatory serodiagnosis test. Polymerase chain reaction (PCR) connected with restriction fragment length polymorphism (RFLP) and sequence analyses were used for genotyping of <it>O. tsutsugamushi </it>DNAs. Clinical symptoms and demography of confirmed cases were analyzed.</p> <p>Results</p> <p>A total of 480 scrub typhus cases were confirmed. The cases occurred every year exclusively between September and December with a peak occurrence in October. The case numbers were relatively higher in 1995, 1996, 1997, and 2000 than in other years. 57.9% of cases were in the group aged 21–50. More cases occurred in male (56%) than in female (44%). The predominant occupational group of the cases was farmers (85.0%). Farm work was reported the primary exposure to infection in 67.7% of cases. Fever, rash, and eschar were observed in 100.0%, 90.4%, and 88.5% of cases, respectively. Eschars formed frequently on or around umbilicus, abdomen areas, and front and back of waist (34.1%) in both genders. Normal results were observed in 88.7% (WBC counts), 84.5% (PLT counts), and 89.7% (RBC counts) of cases, respectively. Observations from the five hospitals were compared and no significant differences were found.</p> <p>Conclusion</p> <p>The autumn-winter type scrub typhus in northern China occurred exclusively from September to December with a peak occurrence in October, which was different from the summer type in southern China. In comparison with the summer type, complications associated with autumn-winter type scrub typhus were less severe, and abnormalities of routine hematological parameters were less obvious.</p

    Y-Chromosome Evidence for Common Ancestry of Three Chinese Populations with a High Risk of Esophageal Cancer

    Get PDF
    High rates of esophageal cancer (EC) are found in people of the Henan Taihang Mountain, Fujian Minnan, and Chaoshan regions of China. Historical records describe great waves of populations migrating from north-central China (the Henan and Shanxi Hans) through coastal Fujian Province to the Chaoshan plain. Although these regions are geographically distant, we hypothesized that EC high-risk populations in these three areas could share a common ancestry. Accordingly, we used 16 East Asian-specific Y-chromosome biallelic markers (single nucleotide polymorphisms; Y-SNPs) and six Y-chromosome short tandem repeat (Y-STR) loci to infer the origin of the EC high-risk Chaoshan population (CSP) and the genetic relationship between the CSP and the EC high-risk Henan Taihang Mountain population (HTMP) and Fujian population (FJP). The predominant haplogroups in these three populations are O3*, O3e*, and O3e1, with no significant difference between the populations in the frequency of these genotypes. Frequency distribution and principal component analysis revealed that the CSP is closely related to the HTMP and FJP, even though the former is geographically nearer to other populations (Guangfu and Hakka clans). The FJP is between the CSP and HTMP in the principal component plot. The CSP, FJP and HTMP are more closely related to Chinese Hans than to minorities, except Manchu Chinese, and are descendants of Sino-Tibetans, not Baiyues. Correlation analysis, hierarchical clustering analysis, and phylogenetic analysis (neighbor-joining tree) all support close genetic relatedness among the CSP, FJP and HTMP. The network for haplogroup O3 (including O3*, O3e* and O3e1) showed that the HTMP have highest STR haplotype diversity, suggesting that the HTMP may be a progenitor population for the CSP and FJP. These findings support the potentially important role of shared ancestry in understanding more about the genetic susceptibility in EC etiology in high-risk populations and have implications for determining the molecular basis of this disease

    Oxidation behavior of graphene-coated copper at intrinsic graphene defects of different origins

    Get PDF
    The development of ultrathin barrier films is vital to the advanced semiconductor industry. Graphene appears to hold promise as a protective coating; however, the polycrystalline and defective nature of engineered graphene hinders its practical applications. Here, we investigate the oxidation behavior of graphene-coated Cu foils at intrinsic graphene defects of different origins. Macro-scale information regarding the spatial distribution and oxidation resistance of various graphene defects is readily obtained using optical and electron microscopies after the hot-plate annealing. The controlled oxidation experiments reveal that the degree of structural deficiency is strongly dependent on the origins of the structural defects, the crystallographic orientations of the underlying Cu grains, the growth conditions of graphene, and the kinetics of the graphene growth. The obtained experimental and theoretical results show that oxygen radicals, decomposed from water molecules in ambient air, are effectively inverted at Stone-Wales defects into the graphene/Cu interface with the assistance of facilitators
    corecore