21 research outputs found
External Quality Assessment on Molecular Tumor Profiling with Circulating Tumor DNA-Based Methodologies Routinely Used in Clinical Pathology within the COIN Consortium
BackgroundIdentification of tumor-derived variants in circulating tumor DNA (ctDNA) has potential as a sensitive and reliable surrogate for tumor tissue-based routine diagnostic testing. However, variations in pre(analytical) procedures affect the efficiency of ctDNA recovery. Here, an external quality assessment (EQA) was performed to determine the performance of ctDNA mutation detection work flows that are used in current diagnostic settings across laboratories within the Dutch COIN consortium (ctDNA on the road to implementation in The Netherlands).MethodsAliquots of 3 high-volume diagnostic leukapheresis (DLA) plasma samples and 3 artificial reference plasma samples with predetermined mutations were distributed among 16 Dutch laboratories. Participating laboratories were requested to perform ctDNA analysis for BRAF exon 15, EGFR exon 18–21, and KRAS exon 2–3 using their regular circulating cell-free DNA (ccfDNA) analysis work flow. Laboratories were assessed based on adherence to the study protocol, overall detection rate, and overall genotyping performance.ResultsA broad range of preanalytical conditions (e.g., plasma volume, elution volume, and extraction methods) and analytical methodologies (e.g., droplet digital PCR [ddPCR], small-panel PCR assays, and next-generation sequencing [NGS]) were used. Six laboratories (38%) had a performance score of >0.90; all other laboratories scored between 0.26 and 0.80. Although 13 laboratories (81%) reached a 100% overall detection rate, the therapeutically relevant EGFR p.(S752_I759del) (69%), EGFR p.(N771_H773dup) (50%), and KRAS p.(G12C) (48%) mutations were frequently not genotyped accurately.ConclusionsDivergent (pre)analytical protocols could lead to discrepant clinical outcomes when using the same plasma samples. Standardization of (pre)analytical work flows can facilitate the implementation of reproducible liquid biopsy testing in the clinical routine
Biochemical, physiological, and performance response of a functional watermelon juice enriched in L-citrulline during a half-marathon race
Background: Watermelon is a rich natural source of l-citrulline. This non-essential amino acid increases exercise performance.
Objective: Evaluate the effect of Fashion watermelon juice enriched in l-citrulline (CWJ) (3.45 g per 500 mL) in physical performance and biochemical markers after a half-marathon race.
Design: A randomised, double blind, crossover design where 2 h after drinking 500 mL of CWJ or placebo (PLA, beverage without l-citrulline) amateur male runners performed two half-marathon races. Jump height, heart rate and rating of perceived exertion were evaluated before and after the races. Moreover, muscle soreness and plasma markers of muscle damage and metabolism were evaluated for 72 h after the races.
Results: Muscle soreness perception was significantly lower from 24 to 72 h after the race with CWJ beverage. Immediately after the races, runners under CWJ condition showed plasma lactate and glucose concentrations significantly lower and higher lactate dehydrogenase and l-arginine concentration than runners under PLA. A maintenance of jump heights after the races under CWJ supplementation was found, decreasing significantly with PLA.
Conclusion: A single Fashion watermelon juice enriched in l-citrulline dose diminished muscle soreness perception from 24 to 72 h after the race and maintained lower concentrations of plasma lactate after an exhausting exercise.Actividad FÃsica y Deport
Enrichment methods to detect bone marrow micrometastases in breast carcinoma patients: clinical relevance
INTRODUCTION: Improving technologies for the detection and purification of bone marrow (BM) micrometastatic cells in breast cancer patients should lead to earlier prognosis of the risk of relapse and should make it possible to design more appropriate therapies. The technique used has to overcome the challenges resulting from the small number of target cells (one per million hematopoietic cells) and the heterogeneous expression of micrometastatic cell markers. In the present study, we have assessed the clinical relevance of current methods aimed at detecting rare disseminated carcinoma cells. METHODS: BM aspirates from 32 carcinoma patients were screened for the presence of micrometastatic cells positive for epithelial cell adhesion molecule and positive for cytokeratins, using optimized immunodetection methods. A comparison with data obtained for 46 control BM aspirates and a correlation with the clinical status of patients were performed. RESULTS: We developed a sensitive and efficient immunomagnetic protocol for the enrichment of BM micrometastases. This method was used to divide 32 breast carcinoma patients into three categories according to their epithelial cell adhesion molecule status. These categories were highly correlated with the recently revised American Joint Committee on Cancer staging system for breast cancer, demonstrating the clinical relevance of this simple and reliable immunomagnetic technique. We also evaluated immunocytochemical detection of cytokeratin-positive cells and cytomorphological parameters. Immunocytochemistry-based methods for the detection of BM micrometastases did not provide any information about the clinical status of patients, but helped to refine the immunomagnetic data by confirming the presence of micrometastases in some cases. We also tested a new density gradient centrifugation system, able to enrich the tumor fraction of BM specimens by twofold to threefold as compared with standard Ficoll methods. CONCLUSION: These improved methods for the detection of micrometastatic cells in patient BM should help clinicians to predict the clinical status of breast cancer patients at the time of surgery or treatment
Clinical characteristics of women captured by extending the definition of severe postpartum haemorrhage with 'refractoriness to treatment': a cohort study
Background: The absence of a uniform and clinically relevant definition of severe postpartum haemorrhage
hampers comparative studies and optimization of clinical management. The concept of persistent postpartum
haemorrhage, based on refractoriness to initial first-line treatment, was proposed as an alternative to common
definitions that are either based on estimations of blood loss or transfused units of packed red blood cells
(RBC). We compared characteristics and outcomes of women with severe postpartum haemorrhage captured
by these three types of definitions.
Methods: In this large retrospective cohort study in 61 hospitals in the Netherlands we included 1391 consecutive
women with postpartum haemorrhage who received either ≥4 units of RBC or a multicomponent transfusion. Clinical
characteristics and outcomes of women with severe postpartum haemorrhage defined as persistent postpartum
haemorrhage were compared to definitions based on estimated blood loss or transfused units of RBC within 24 h
following birth. Adverse maternal outcome was a composite of maternal mortality, hysterectomy, arterial embolisation
and intensive care unit admission.
Results: One thousand two hundred sixty out of 1391 women (90.6%) with postpartum haemorrhage fulfilled the
definition of persistent postpartum haemorrhage. The majority, 820/1260 (65.1%), fulfilled this definition within 1 h
following birth, compared to 819/1391 (58.7%) applying the definition of ≥1 L blood loss and 37/845 (4.4%) applying
the definition of ≥4 units of RBC. The definition persistent postpartum haemorrhage captured 430/471 adverse maternal
outcomes (91.3%), compared to 471/471 (100%) for ≥1 L blood loss and 383/471 (81.3%) for ≥4 units of RBC. Persistent
postpartum haemorrhage did not capture all adverse outcomes because of missing data on timing of initial, first-line
treatment.
Conclusion: The definition persistent postpartum haemo
Flow cytometric sorting of paraffin-embedded tumor tissues considerably improves molecular genetic analysis
The characterization of genetic aberrations in paraffin-embedded tumor material is impaired by contaminating normal cells. In the present study on the genetic causes of loss of HLA expression in diffuse large B-cell lymphoma (DLBCL), we compared the efficacy of microdissection with flow cytometric sorting of tumor cells. Single-cell suspensions from paraffin-embedded material of 5 DLBCL cases were stained for CD79a and DNA content (propidium iodide). Fluorescent in situ hybridization (FISH) using HLA class II and chromosome 6 centromeric probes and loss of heterozygosity (LOH) analysis with 5 HLA-specific microsatellite markers were performed on microdissected and flow cytometry-sorted fractions. FISH confirmed considerable enrichment of the samples after flow cytometric sorting and disclosed tumor heterogeneity in 4 cases. Moreover, lymphomas with a so-called zebra LOH pattern in the microdissected material showed unambiguous LOH after flow cytometric sorting, revealing in 1 case a biologically relevant hemizygous deletion in the HLA region
Inosine triphosphate pyrophosphohydrolase activity: more accurate predictor for ribavirin-induced anemia in hepatitis C infected patients than ITPA genotype
Background: ITPA polymorphisms have been associated with protection against ribavirin-induced anemia in chronic hepatitis C (HCV) patients. Here we determined the association of inosine triphosphate pyrophosphohydrolase (inosine triphosphatase or ITPase) enzyme -activity with ITPA genotype in predicting ribavirin-induced anemia. Methods: In a cohort of 106 HCV patients, hemoglobin (Hb) values were evaluated after 4 weeks (T 4) and at the time of lowest Hb value (T nadir). ITPase activity was measured and ITPA genotype determined. Single-nucleotide polymorphisms (SNPs) tested were c.124+21A>C and c.94C>A. ITPase activity = 1.11 mU/mol Hb was considered as normal. Results: After 4 weeks of treatment, 78% of the patients with normal ITPase activity were anemic and 21% of the patients with low ITPase activity (p<0.001). Stratified by genotype, the percentages of anemic patients were: wt/wt 76%, wt/c. 124+21A>C 46% (p=0.068), and wt/c.94C>A 29% (p=0.021). At T nadir, virtually all patients with normal ITPase activity were anemic, compared to only 64% of the patients with low activity (p=0.02). Thirteen patients had wt/c.124+241A>C genotype. Within this group all five patients with normal ITPase activity and only four of eight with decreased activity developed anemia. Presence of HCV RNA did not influence ITPase activity. Conclusions: This study is the first to report that ITPase activity predicts the development of anemia during ribavirin treatment. ITPase activity and ITPA genotype have high positive predictive values for development of ribavirin-induced anemia at any time during treatment, but ITPase activity predicts ribavirin-induced anemia more accurately
Activated macrophages containing tumor marker in colon carcinoma: immunohistochemical proof of a concept.
The presence of carcinoembryonic antigen (CEA)-containing activated macrophages has been demonstrated in peripheral blood from patients with colorectal carcinoma. Macrophages migrate from the circulation into the tissue, phagocytose debris, and return to the bloodstream. Hence it seems likely that activated macrophages containing tumor debris, i.e., tumor marker, are present in the stroma of colorectal carcinoma. After phagocytosis, they could follow a hematogenic or lymphogenic route to the peripheral blood. The aim of this study is to assess the presence of tumor marker-containing activated macrophages in the stroma of colon carcinoma and in regional lymph nodes. From 10 cases of colon carcinoma, samples of tumor tissue and metastasis-free lymph nodes were cut in serial sections and stained for CD68 to identify macrophages and for CEA, cytokeratin, or M30 presence. Slides were digitalised and visually inspected using two monitors, comparing the CD68 stain to the tumor marker stain to evaluate the presence of tumor marker-positive macrophages. Macrophages containing tumor marker could be identified in tumor stroma and in metastasis-free regional lymph nodes. The distribution varied for the different markers, CEA-positive macrophages being most abundant. The presence of macrophages containing tumor marker in the tumor stroma and lymph nodes from patients with colon carcinoma could be confirmed in this series using serial immunohistochemistry. This finding supports the concept of activated macrophages, after phagocytosing cell debris, being transported or migrating through the lymphatic system. These results support the potential of tumor marker-containing macrophages to serve as a marker for diagnosis and follow-up of colon cancer patients
External Quality Assessment on Molecular Tumor Profiling with Circulating Tumor DNA-Based Methodologies Routinely Used in Clinical Pathology within the COIN Consortium
BackgroundIdentification of tumor-derived variants in circulating tumor DNA (ctDNA) has potential as a sensitive and reliable surrogate for tumor tissue-based routine diagnostic testing. However, variations in pre(analytical) procedures affect the efficiency of ctDNA recovery. Here, an external quality assessment (EQA) was performed to determine the performance of ctDNA mutation detection work flows that are used in current diagnostic settings across laboratories within the Dutch COIN consortium (ctDNA on the road to implementation in The Netherlands).MethodsAliquots of 3 high-volume diagnostic leukapheresis (DLA) plasma samples and 3 artificial reference plasma samples with predetermined mutations were distributed among 16 Dutch laboratories. Participating laboratories were requested to perform ctDNA analysis for BRAF exon 15, EGFR exon 18–21, and KRAS exon 2–3 using their regular circulating cell-free DNA (ccfDNA) analysis work flow. Laboratories were assessed based on adherence to the study protocol, overall detection rate, and overall genotyping performance.ResultsA broad range of preanalytical conditions (e.g., plasma volume, elution volume, and extraction methods) and analytical methodologies (e.g., droplet digital PCR [ddPCR], small-panel PCR assays, and next-generation sequencing [NGS]) were used. Six laboratories (38%) had a performance score of >0.90; all other laboratories scored between 0.26 and 0.80. Although 13 laboratories (81%) reached a 100% overall detection rate, the therapeutically relevant EGFR p.(S752_I759del) (69%), EGFR p.(N771_H773dup) (50%), and KRAS p.(G12C) (48%) mutations were frequently not genotyped accurately.ConclusionsDivergent (pre)analytical protocols could lead to discrepant clinical outcomes when using the same plasma samples. Standardization of (pre)analytical work flows can facilitate the implementation of reproducible liquid biopsy testing in the clinical routine