In the US, the cultivated area (hectares) and production (tonnes) of crops that require or benefit from insect pollination (directly dependent crops: apples, almonds, blueberries, cucurbits, etc.) increased from 1992, the first year in this study, through 1999 and continued near those levels through 2009; aggregate yield (tonnes/hectare) remained unchanged. The value of directly dependent crops attributed to all insect pollination (2009 USD) decreased from 14.29billionin1996,thefirstyearforvaluedatainthisstudy,to10.69 billion in 2001, but increased thereafter, reaching 15.12billionby2009.Thevaluesattributedtohoneybeesandnon−Apispollinatorsfollowedsimilarpatterns,reaching11.68 billion and 3.44billion,respectively,by2009.Thecultivatedareaofcropsgrownfromseedsresultingfrominsectpollination(indirectlydependentcrops:legumehays,carrots,onions,etc.)wasstablefrom1992through1999,buthassincedeclined.Productionofthosecropsalsodeclined,albeitnotasrapidlyasthedeclineincultivatedarea;thisasymmetrywasduetoincreasesinaggregateyield.Thevalueofindirectlydependentcropsattributedtoinsectpollinationdeclinedfrom15.45 billion in 1996 to 12.00billionin2004,buthassincetrendedupward.Thevalueofindirectlydependentcropsattributedtohoneybeesandnon−Apispollinators,exclusiveofalfalfaleafcutterbees,hasdeclinedsince1996to5.39 billion and 1.15billion,respectivelyin2009.Thevalueofalfalfahayattributedtoalfalfaleafcutterbeesrangedbetween4.99 and $7.04 billion. Trend analysis demonstrates that US producers have a continued and significant need for insect pollinators and that a diminution in managed or wild pollinator populations could seriously threaten the continued production of insect pollinated crops and crops grown from seeds resulting from insect pollination
In neonates, vancomycin, a narrow-spectrum antibiotic, is the first choice of treatment of late-onset sepsis predominantly caused by Gram-positive bacteria (coagulase-negative staphylococci and enterococci). Although it has been used for >50 years, prescribing the right dose and dosing regimen remains a challenge in neonatal intensive care units for many reasons including high pharmacokinetic variability, increase in the minimal inhibition concentration against staphylococci, lack of consensus on dosing regimen and way of administration (continuous or intermittent), duration of treatment, use of therapeutic drug monitoring, limited data on short- and long-term toxicity, risk of mutant selection and errors of administration linked to concentrated formulations. This article highlights and discusses future research directions, with specific attention given to dosing optimization of vancomycin, including the advantages of modeling and simulation approaches