34 research outputs found
TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors.
The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic-stem-cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signalling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signalling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role for TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas
Immunohistochemical analysis of changes in signaling pathway activation downstream of growth factor receptors in pancreatic duct cell carcinogenesis
<p>Abstract</p> <p>Background</p> <p>The pathogenesis of pancreatic ductal adenocarcinoma (PDAC) involves multi-stage development of molecular aberrations affecting signaling pathways that regulate cancer growth and progression. This study was performed to gain a better understanding of the abnormal signaling that occurs in PDAC compared with normal duct epithelia.</p> <p>Methods</p> <p>We performed immunohistochemistry on a tissue microarray of 26 PDAC, 13 normal appearing adjacent pancreatic ductal epithelia, and 12 normal non-PDAC ducts. We compared the levels of 18 signaling proteins including growth factor receptors, tumor suppressors and 13 of their putative downstream phosphorylated (p-) signal transducers in PDAC to those in normal ductal epithelia.</p> <p>Results</p> <p>The overall profiles of signaling protein expression levels, activation states and sub-cellular distribution in PDAC cells were distinguishable from non-neoplastic ductal epithelia. The ERK pathway activation was correlated with high levels of <sup>S2448</sup>p-mTOR (100%, p = 0.05), <sup>T389</sup>p-S6K (100%, p = 0.02 and <sup>S235/236</sup>p-S6 (86%, p = 0.005). Additionally, <sup>T389</sup>p-S6K correlated with <sup>S727</sup>p-STAT3 (86%, p = 0.005). Advanced tumors with lymph node metastasis were characterized by high levels of <sup>S276</sup>p-NFκB (100%, p = 0.05) and <sup>S9</sup>p-GSK3β (100%, p = 0.05). High levels of PKBβ/AKT2, EGFR, as well as nuclear <sup>T202/Y204</sup>p-ERK and <sup>T180/Y182</sup>p-p38 were observed in normal ducts adjacent to PDAC compared with non-cancerous pancreas.</p> <p>Conclusion</p> <p>Multiple signaling proteins are activated in pancreatic duct cell carcinogenesis including those associated with the ERK, PKB/AKT, mTOR and STAT3 pathways. The ERK pathway activation appears also increased in duct epithelia adjacent to carcinoma, suggesting tumor micro-environmental effects.</p
The TGFβ-SMAD3 pathway inhibits IL-1α induced interactions between human pancreatic stellate cells and pancreatic carcinoma cells and restricts cancer cell migration
Attempting to Compensate for Reduced Neuronal Nitric Oxide Synthase Protein with Nitrate Supplementation Cannot Overcome Metabolic Dysfunction but Rather Has Detrimental Effects in Dystrophin-Deficient mdx Muscle
Leukocyte Telomere Length in Major Depression: Correlations with Chronicity, Inflammation and Oxidative Stress - Preliminary Findings
Depression is associated with an unusually high rate of aging-related illnesses and early mortality. One aspect of “accelerated aging” in depression may be shortened leukocyte telomeres. When telomeres critically shorten, as often occurs with repeated mitoses or in response to oxidation and inflammation, cells may die. Indeed, leukocyte telomere shortening predicts early mortality and medical illnesses in non-depressed populations. We sought to determine if leukocyte telomeres are shortened in Major Depressive Disorder (MDD), whether this is a function of lifetime depression exposure and whether this is related to putative mediators, oxidation and inflammation.Leukocyte telomere length was compared between 18 unmedicated MDD subjects and 17 controls and was correlated with lifetime depression chronicity and peripheral markers of oxidation (F2-isoprostane/Vitamin C ratio) and inflammation (IL-6). Analyses were controlled for age and sex.The depressed group, as a whole, did not differ from the controls in telomere length. However, telomere length was significantly inversely correlated with lifetime depression exposure, even after controlling for age (p<0.05). Average telomere length in the depressed subjects who were above the median of lifetime depression exposure (≥9.2 years' cumulative duration) was 281 base pairs shorter than that in controls (p<0.05), corresponding to approximately seven years of “accelerated cell aging.” Telomere length was inversely correlated with oxidative stress in the depressed subjects (p<0.01) and in the controls (p<0.05) and with inflammation in the depressed subjects (p<0.05).These preliminary data indicate that accelerated aging at the level of leukocyte telomeres is proportional to lifetime exposure to MDD. This might be related to cumulative exposure to oxidative stress and inflammation in MDD. This suggest that telomere shortening does not antedate depression and is not an intrinsic feature. Rather, telomere shortening may progress in proportion to lifetime depression exposure
Assessing human diet and movement in the Tongan maritime chiefdom using isotopic analyses.
The rise of stratified societies fundamentally influences the interactions between status, movement, and food. Using isotopic analyses, we assess differences in diet and mobility of individuals excavated from two burial mounds located at the `Atele burial site on Tongatapu, the main island of the Kingdom of Tonga (c. 500 - 150 BP). The first burial mound (To-At-1) was classified by some archaeologists as a commoner's mound while the second burial mound (To-At-2) was possibly used for interment of the chiefly class. In this study, stable isotope analyses of diet (δ13C, δ15N, and δ34S; n = 41) are used to asses paleodiet and 87Sr/86Sr ratios (n = 30) are analyzed to investigate individual mobility to test whether sex and social status affected these aspects of life. Our results show significant differences in diet between burial mounds and sexes. Those interred in To-At-2 displayed lower δ13C values, indicating they ate relatively more terrestrial plants (likely starchy vegetable staples) compared with To-At-1 individuals. Females displayed significantly lower δ15N values compared with males within the entire assemblage. No differences in δ34S values were observed between sexes or burial mound but it is possible that sea spray or volcanism may have affected these values. One individual displayed the strontium isotopic composition representative of a nonlocal immigrant (outside 2SD of the mean). This suggests the hegemonic control over interisland travel, may have prevented long-term access to the island by non-Tongans exemplifying the political and spiritual importance of the island of Tongatapu in the maritime chiefdom
Tourmaline occurrences within the Penamacor-Monsanto granitic pluton and host-rocks (Central Portugal): genetic implications of crystal-chemical and isotopic features
Epidermal growth factor receptor signaling pathway is frequently altered in ampullary carcinoma at protein and genetic levels
Our objective was to explore alteration of the epidermal growth factor receptor signaling pathway in ampullary carcinoma. Immunohistochemical studies were employed to evaluate expression of amphiregulin as well as expression and activation of epidermal growth factor receptor. A lab developed assay was used to identify mutations in the epidermal growth factor receptor pathway genes, including KRAS, BRAF, PIK3CA, PTEN and AKT1. Fifty two ampullary carcinomas were identified, including 25 intestinal-type and 24 pancreatobiliary-type tumors with the intestinal type being associated with a younger age at diagnosis (p=0.03) and a better prognosis (p<0.01). Expression of amphiregulin correlated the better differentiation (p<0.01), but no difference was observed between two major histologic types. Expression and activation of epidermal growth factor receptor was more commonly seen in the pancreatobiliary type (p<0.01). Mutations were detected in 50% of the pancreatobiliary type and 60% of the intestinal type. KRAS was the most common gene mutated in the pancreatobiliary type (42%) as well as the intestinal type (52%). Other mutations detected included PIK3CA, and SMAD4 and BRAF. KRAS mutations at codons 12 and 13 did not impact adversely on overall survival. In conclusion, epidermal growth factor receptor expression and activation were different between intestinal- and pancreatobiliary-type ampullary carcinoma. KRAS mutation was common in both histologic types; however, the incidence appeared to be lower in the pancreatobiliary type compared to its pancreatic counterpart, pancreatic ductal adenocarcinoma. Mutational analysis of the epidermal growth factor receptor pathway genes may provide important insights into personalized treatment for patients with ampullary carcinoma
