104 research outputs found

    Implementation of a Toffoli Gate with Superconducting Circuits

    Full text link
    The quantum Toffoli gate allows universal reversible classical computation. It is also an important primitive in many quantum circuits and quantum error correction schemes. Here we demonstrate the realization of a Toffoli gate with three superconducting transmon qubits coupled to a microwave resonator. By exploiting the third energy level of the transmon qubit, the number of elementary gates needed for the implementation of the Toffoli gate, as well as the total gate time can be reduced significantly in comparison to theoretical proposals using two-level systems only. We characterize the performance of the gate by full process tomography and Monte Carlo process certification. The gate fidelity is found to be 68.5±0.568.5\pm0.5%.Comment: 4 pages, 5figure

    Be SMART:examining the experience of implementing the NHS Health Check in UK primary care

    Get PDF
    Background: The NHS Health Check was designed by UK Department of Health to address increased prevalence of cardiovascular disease by identifying risk levels and facilitating behaviour change. It constituted biomedical testing, personalised advice and lifestyle support. The objective of the study was to explore Health Care Professionals' (HCPs) and patients' experiences of delivering and receiving the NHS Health Check in an inner-city region of England. Methods: Patients and HCPs in primary care were interviewed using semi-structured schedules. Data were analysed using Thematic Analysis. Results: Four themes were identified. Firstly, Health Check as a test of 'roadworthiness' for people. The roadworthiness metaphor resonated with some patients but it signified a passive stance toward illness. Some patients described the check as useful in the theme, Health check as revelatory. HCPs found visual aids demonstrating levels of salt/fat/sugar in everyday foods and a 'traffic light' tape measure helpful in communicating such 'revelations' with patients. Being SMART and following the protocolrevealed that few HCPs used SMART goals and few patients spoke of them. HCPs require training to understand their rationale compared with traditional advice-giving. The need for further follow-up revealed disparity in follow-ups and patients were not systematically monitored over time. Conclusions: HCPs' training needs to include the use and evidence of the effectiveness of SMART goals in changing health behaviours. The significance of fidelity to protocol needs to be communicated to HCPs and commissioners to ensure consistency. Monitoring and measurement of follow-up, e.g., tracking of referrals, need to be resourced to provide evidence of the success of the NHS Health Check in terms of healthier lifestyles and reduced CVD risk

    Temperament and Impulsivity Predictors of Smoking Cessation Outcomes

    Get PDF
    Aims: Temperament and impulsivity are powerful predictors of addiction treatment outcomes. However, a comprehensive assessment of these features has not been examined in relation to smoking cessation outcomes.Methods: Naturalistic prospective study. Treatment-seeking smokers (n = 140) were recruited as they engaged in an occupational health clinic providing smoking cessation treatment between 2009 and 2013. Participants were assessed at baseline with measures of temperament (Temperament and Character Inventory), trait impulsivity (Barratt Impulsivity Scale), and cognitive impulsivity (Go/No Go, Delay Discounting and Iowa Gambling Task). The outcome measure was treatment status, coded as “dropout” versus “relapse” versus “abstinence” at 3, 6, and 12 months endpoints. Participants were telephonically contacted and reminded of follow-up face to face assessments at each endpoint. The participants that failed to answer the phone calls or self-reported discontinuation of treatment and failed to attend the upcoming follow-up session were coded as dropouts. The participants that self-reported continuing treatment, and successfully attended the upcoming follow-up session were coded as either “relapse” or “abstinence”, based on the results of smoking behavior self-reports cross-validated with co-oximetry hemoglobin levels. Multinomial regression models were conducted to test whether temperament and impulsivity measures predicted dropout and relapse relative to abstinence outcomes.Results: Higher scores on temperament dimensions of novelty seeking and reward dependence predicted poorer retention across endpoints, whereas only higher scores on persistence predicted greater relapse. Higher scores on the trait dimension of non-planning impulsivity but not performance on cognitive impulsivity predicted poorer retention. Higher non-planning impulsivity and poorer performance in the Iowa Gambling Task predicted greater relapse at 3 and 6 months and 6 months respectively.Conclusion: Temperament measures, and specifically novelty seeking and reward dependence, predict smoking cessation treatment retention, whereas persistence, non-planning impulsivity and poor decision-making predict smoking relapse.This research was funded by the Occupational Medicine Area (Prevention Service); Department of Personality, Assessment and Psychological Treatment, University of Granada (Spain); and Ministerio de Economía y Competitividad grant (MINICO, ref. # PSI2013-45055-P) for the first and second authors

    Epigenetic management of major psychosis

    Get PDF
    Epigenetic mechanisms are thought to play a major role in the pathogenesis of the major psychoses (schizophrenia and bipolar disorder), and they may be the link between the environment and the genome in the pathogenesis of these disorders. This paper discusses the role of epigenetics in the management of major psychosis: (1) the role of epigenetic drugs in treating these disorders. At present, there are three categories of epigenetic drugs that are being actively investigated for their ability to treat psychosis: drugs inhibiting histone deacetylation; drugs decreasing DNA methylation; and drugs targeting microRNAs; and (2) the role of epigenetic mechanisms in electroconvulsive therapy in these disorders

    dTip60 HAT Activity Controls Synaptic Bouton Expansion at the Drosophila Neuromuscular Junction

    Get PDF
    Background: Histone acetylation of chromatin plays a key role in promoting the dynamic transcriptional responses in neurons that influence the neuroplasticity linked to cognitive ability, yet the specific histone acetyltransferases (HATs) that create such epigenetic marks remain to be elucidated. Methods and Findings: Here we use the Drosophila neuromuscular junction (NMJ) as a well-characterized synapse model to identify HATs that control synaptic remodeling and structure. We show that the HAT dTip60 is concentrated both pre and post-synaptically within the NMJ. Presynaptic targeted reduction of dTip60 HAT activity causes a significant increase in synaptic bouton number that specifically affects type Is boutons. The excess boutons show a suppression of the active zone synaptic function marker bruchpilot, suggesting defects in neurotransmission function. Analysis of microtubule organization within these excess boutons using immunohistochemical staining to the microtubule associated protein futsch reveals a significant increase in the rearrangement of microtubule loop architecture that is required for bouton division. Moreover, a-tubulin acetylation levels of microtubules specifically extending into the terminal synaptic boutons are reduced in response to dTip60 HAT reduction. Conclusions: Our results are the first to demonstrate a causative role for the HAT dTip60 in the control of synaptic plasticity that is achieved, at least in part, via regulation of the synaptic microtubule cytoskeleton. These findings have implication

    The role of diet in the aetiopathogenesis of inflammatory bowel disease

    Get PDF
    Crohn’s disease and ulcerative colitis, collectively known as IBD, are chronic inflammatory disorders of the gastrointestinal tract. Although the aetiopathogenesis of IBD is largely unknown, it is widely thought that diet has a crucial role in the development and progression of IBD. Indeed, epidemiological and genetic association studies have identified a number of promising dietary and genetic risk factors for IBD. These preliminary studies have led to major interest in investigating the complex interaction between diet, host genetics, the gut microbiota and immune function in the pathogenesis of IBD. In this Review, we discuss the recent epidemiological, gene–environment interaction, microbiome and animal studies that have explored the relationship between diet and the risk of IBD. In addition, we highlight the limitations of these prior studies, in part by explaining their contradictory findings, and review future directions

    The Human Serum Metabolome

    Get PDF
    Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca

    Mitochondrial dysfunction and biogenesis: do ICU patients die from mitochondrial failure?

    Get PDF
    Mitochondrial functions include production of energy, activation of programmed cell death, and a number of cell specific tasks, e.g., cell signaling, control of Ca2+ metabolism, and synthesis of a number of important biomolecules. As proper mitochondrial function is critical for normal performance and survival of cells, mitochondrial dysfunction often leads to pathological conditions resulting in various human diseases. Recently mitochondrial dysfunction has been linked to multiple organ failure (MOF) often leading to the death of critical care patients. However, there are two main reasons why this insight did not generate an adequate resonance in clinical settings. First, most data regarding mitochondrial dysfunction in organs susceptible to failure in critical care diseases (liver, kidney, heart, lung, intestine, brain) were collected using animal models. Second, there is no clear therapeutic strategy how acquired mitochondrial dysfunction can be improved. Only the benefit of such therapies will confirm the critical role of mitochondrial dysfunction in clinical settings. Here we summarized data on mitochondrial dysfunction obtained in diverse experimental systems, which are related to conditions seen in intensive care unit (ICU) patients. Particular attention is given to mechanisms that cause cell death and organ dysfunction and to prospective therapeutic strategies, directed to recover mitochondrial function. Collectively the data discussed in this review suggest that appropriate diagnosis and specific treatment of mitochondrial dysfunction in ICU patients may significantly improve the clinical outcome
    corecore