53,941 research outputs found
Wave Profile for Current Bearing Antiforce Waves
For fluid dynamical analysis of breakdown waves, we employ a one-dimensional, three-component (electrons, ions and neutral particles) fluid model to describe a steady-state, ionizing wave propagating counter to strong electric fields. The electron gas temperature and therefore the electron fluid pressure is assumed to be large enough to sustain the wave motion down the discharge tube. Such waves are referred to as antiforce waves. The complete set of equations describing such waves consists of the equations of conservation of mass, momentum and energy coupled with Poisson’s equation. Inclusion of current behind the wave front alters the set of electron fluid dynamical equations and also the boundary condition on electron temperature. For a range of experimentally observed current values, using the modified boundary condition on electron temperature, we have been able to integrate our modified set of electron fluid dynamical equations through the Debye layer. Our solutions meet the expected boundary conditions at the trailing edge of the wave. We present the wave profile for electric field, electron velocity, electron number density and electron temperature within the Debye layer of the wave
Children with 5′-end NF1 gene mutations are more likely to have glioma
Objective:To ascertain the relationship between the germline NF1 gene mutation and glioma development in patients with neurofibromatosis type 1 (NF1).Methods:The relationship between the type and location of the germline NF1 mutation and the presence of a glioma was analyzed in 37 participants with NF1 from one institution (Washington University School of Medicine [WUSM]) with a clinical diagnosis of NF1. Odds ratios (ORs) were calculated using both unadjusted and weighted analyses of this data set in combination with 4 previously published data sets.Results:While no statistical significance was observed between the location and type of the NF1 mutation and glioma in the WUSM cohort, power calculations revealed that a sample size of 307 participants would be required to determine the predictive value of the position or type of the NF1 gene mutation. Combining our data set with 4 previously published data sets (n = 310), children with glioma were found to be more likely to harbor 5′-end gene mutations (OR = 2; p = 0.006). Moreover, while not clinically predictive due to insufficient sensitivity and specificity, this association with glioma was stronger for participants with 5′-end truncating (OR = 2.32; p = 0.005) or 5′-end nonsense (OR = 3.93; p = 0.005) mutations relative to those without glioma.Conclusions:Individuals with NF1 and glioma are more likely to harbor nonsense mutations in the 5′ end of the NF1 gene, suggesting that the NF1 mutation may be one predictive factor for glioma in this at-risk population.</jats:sec
Ion yields and erosion rates for Si1−xGex(0x1) ultralow energy O2+ secondary ion mass spectrometry in the energy range of 0.25–1 keV
We report the SIMS parameters required for the quantitative analysis of Si1−xGex across the range of 0 ≤ x ≤ 1 when using low energy O2+ primary ions at normal incidence. These include the silicon and germanium secondary ion yield [i.e., the measured ion signal (ions/s)] and erosion rate [i.e., the speed at which the material sputters (nm/min)] as a function of x. We show that the ratio Rx of erosion rates, Si1−xGex/Si, at a given x is almost independent of beam energy, implying that the properties of the altered layer are dominated by the interaction of oxygen with silicon. Rx shows an exponential dependence on x. Unsurprisingly, the silicon and germanium secondary ion yields are found to depart somewhat from proportionality to (1−x) and x, respectively, although an approximate linear relationship could be used for quantification across around 30% of the range of x (i.e., a reference material containing Ge fraction x would give reasonably accurate quantification across the range of ±0.15x). Direct comparison of the useful (ion) yields [i.e., the ratio of ion yield to the total number of atoms sputtered for a particular species (ions/atom)] and the sputter yields [i.e., the total number of atoms sputtered per incident primary ion (atoms/ions)] reveals a moderate matrix effect where the former decrease monotonically with increasing x except at the lowest beam energy investigated (250 eV). Here, the useful yield of Ge is found to be invariant with x. At 250 eV, the germanium ion and sputter yields are proportional to x for all x
Negative Energy Density States for the Dirac Field in Flat Spacetime
Negative energy densities in the Dirac field produced by state vectors that
are the superposition of two single particle electron states are examined. I
show that for such states the energy density of the field is not bounded from
below and that the quantum inequalities derived for scalar fields are
satisfied. I also show that it is not possible to produce negative energy
densities in a scalar field using state vectors that are arbitrary
superpositions of single particle states.Comment: 11 pages, LaTe
Inbreeding depression in red deer calves
BACKGROUND Understanding the fitness consequences of inbreeding is of major importance for evolutionary and conservation biology. However, there are few studies using pedigree-based estimates of inbreeding or investigating the influence of environment and age variation on inbreeding depression in natural populations. Here we investigated the consequences of variation in inbreeding coefficient for three juvenile traits, birth date, birth weight and first year survival, in a wild population of red deer, considering both calf and mother's inbreeding coefficient. We also tested whether inbreeding depression varied with environmental conditions and maternal age. RESULTS We detected non-zero inbreeding coefficients for 22% of individuals with both parents and at least one grandparent known (increasing to 42% if the dataset was restricted to those with four known grandparents). Inbreeding depression was evident for birth weight and first year survival but not for birth date: the first year survival of offspring with an inbreeding coefficient of 0.25 was reduced by 77% compared to offspring with an inbreeding coefficient of zero. However, it was independent of measures of environmental variation and maternal age. The effect of inbreeding on birth weight appeared to be driven by highly inbred individuals (F = 0.25). On the other hand first year survival showed strong inbreeding depression that was not solely driven by individuals with the highest inbreeding coefficients, corresponding to an estimate of 4.35 lethal equivalents. CONCLUSIONS These results represent a rare demonstration of inbreeding depression using pedigree-based estimates in a wild mammal population and highlight the potential strength of effects on key components of fitness.This research was
supported by a NERC grant to LEBK, JMP and THCB, NERC and BBSRC
fellowships to DHN and a Royal Society fellowship to LEBK
The Near-Infrared Broad Emission Line Region of Active Galactic Nuclei -- I. The Observations
We present high quality (high signal-to-noise ratio and moderate spectral
resolution) near-infrared (near-IR) spectroscopic observations of 23 well-known
broad-emission line active galactic nuclei (AGN). Additionally, we obtained
simultaneous (within two months) optical spectroscopy of similar quality. The
near-IR broad emission line spectrum of AGN is dominated by permitted
transitions of hydrogen, helium, oxygen, and calcium, and by the rich spectrum
of singly-ionized iron. In this paper we present the spectra, line
identifications and measurements, and address briefly some of the important
issues regarding the physics of AGN broad emission line regions. In particular,
we investigate the excitation mechanism of neutral oxygen and confront for the
first time theoretical predictions of the near-IR iron emission spectrum with
observations.Comment: 45 pages, 17 figures, accepted by ApJ
Epilepsy-specific patient-reported outcome measures of children's health-related quality of life: A systematic review of measurement properties.
This is the final version. Available from the publisher via the DOI in this record.OBJECTIVE: To identify and appraise published evidence of the measurement properties for epilepsy-specific patient-reported outcome measures (PROMs) of children's health-related quality of life (HRQoL). METHODS: We searched multiple databases for studies evaluating the measurement properties of English-language epilepsy-specific PROMs of children's HRQoL. We assessed the methodological quality using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) guidance. We extracted data about the content validity, construct validity, internal consistency, test-retest reliability, proxy reliability, responsiveness, and precision, and assessed the measurement properties with reference to standardized criteria. RESULTS: We identified 27 papers that evaluated 11 PROMs. Methodological quality was variable. Construct validity, test-retest reliability, and internal consistency were more commonly assessed. Quality of Life in Childhood Epilepsy (QoLCE) questionnaires are parent-reported and evaluated more than other PROMs; QoLCE-55 has good and replicated evidence for structural and construct validity and internal consistency. Health-Related Quality of Life Measure for Children with Epilepsy (CHEQoL) has both child and parent-reported versions and good evidence of content, structural, and construct validity. SIGNIFICANCE: This review identified two leading candidate epilepsy-specific PROMs for measuring health-related quality of life in children. Establishing evidence of the responsiveness of PROMs is a priority to help the interpretation of meaningful change scores.National Institute for Health Research (NIHR
How to make a traversable wormhole from a Schwarzschild black hole
The theoretical construction of a traversable wormhole from a Schwarzschild
black hole is described, using analytic solutions in Einstein gravity. The
matter model is pure phantom radiation (pure radiation with negative energy
density) and the idealization of impulsive radiation is employed.Comment: 4 pages, 4 figure
A Superluminal Subway: The Krasnikov Tube
The ``warp drive'' metric recently presented by Alcubierre has the problem
that an observer at the center of the warp bubble is causally separated from
the outer edge of the bubble wall. Hence such an observer can neither create a
warp bubble on demand nor control one once it has been created. In addition,
such a bubble requires negative energy densities. One might hope that
elimination of the first problem might ameliorate the second as well. We
analyze and generalize a metric, originally proposed by Krasnikov for two
spacetime dimensions, which does not suffer from the first difficulty. As a
consequence, the Krasnikov metric has the interesting property that although
the time for a one-way trip to a distant star cannot be shortened, the time for
a round trip, as measured by clocks on Earth, can be made arbitrarily short. In
our four dimensional extension of this metric, a ``tube'' is constructed along
the path of an outbound spaceship, which connects the Earth and the star.
Inside the tube spacetime is flat, but the light cones are opened out so as to
allow superluminal travel in one direction. We show that, although a single
Krasnikov tube does not involve closed timelike curves, a time machine can be
constructed with a system of two non-overlapping tubes. Furthermore, it is
demonstrated that Krasnikov tubes, like warp bubbles and traversable wormholes,
also involve unphysically thin layers of negative energy density, as well as
large total negative energies, and therefore probably cannot be realized in
practice.Comment: 20 pages, LATEX, 5 eps figures, uses \eps
- …