388 research outputs found
How the Experts Algorithm Can Help Solve LPs Online
We consider the problem of solving packing/covering LPs online, when the
columns of the constraint matrix are presented in random order. This problem
has received much attention and the main focus is to figure out how large the
right-hand sides of the LPs have to be (compared to the entries on the
left-hand side of the constraints) to allow -approximations
online. It is known that the right-hand sides have to be times the left-hand sides, where is the number of constraints.
In this paper we give a primal-dual algorithm that achieve this bound for
mixed packing/covering LPs. Our algorithms construct dual solutions using a
regret-minimizing online learning algorithm in a black-box fashion, and use
them to construct primal solutions. The adversarial guarantee that holds for
the constructed duals helps us to take care of most of the correlations that
arise in the algorithm; the remaining correlations are handled via martingale
concentration and maximal inequalities. These ideas lead to conceptually simple
and modular algorithms, which we hope will be useful in other contexts.Comment: An extended abstract appears in the 22nd European Symposium on
Algorithms (ESA 2014
The Query-commit Problem
In the query-commit problem we are given a graph where edges have distinct
probabilities of existing. It is possible to query the edges of the graph, and
if the queried edge exists then its endpoints are irrevocably matched. The goal
is to find a querying strategy which maximizes the expected size of the
matching obtained. This stochastic matching setup is motivated by applications
in kidney exchanges and online dating.
In this paper we address the query-commit problem from both theoretical and
experimental perspectives. First, we show that a simple class of edges can be
queried without compromising the optimality of the strategy. This property is
then used to obtain in polynomial time an optimal querying strategy when the
input graph is sparse. Next we turn our attentions to the kidney exchange
application, focusing on instances modeled over real data from existing
exchange programs. We prove that, as the number of nodes grows, almost every
instance admits a strategy which matches almost all nodes. This result supports
the intuition that more exchanges are possible on a larger pool of
patient/donors and gives theoretical justification for unifying the existing
exchange programs. Finally, we evaluate experimentally different querying
strategies over kidney exchange instances. We show that even very simple
heuristics perform fairly well, being within 1.5% of an optimal clairvoyant
strategy, that knows in advance the edges in the graph. In such a
time-sensitive application, this result motivates the use of committing
strategies
Some lower bounds on sparse outer approximations of polytopes
Motivated by the need to better understand the properties of sparse
cutting-planes used in mixed integer programming solvers, the paper [2] studied
the idealized problem of how well a polytope is approximated by the use of
sparse valid inequalities. As an extension to this work, we study the following
less idealized questions in this paper: (1) Are there integer programs, such
that sparse inequalities do not approximate the integer hull well even when
added to a linear programming relaxation? (2) Are there polytopes, where the
quality of approximation by sparse inequalities cannot be significantly
improved by adding a budgeted number of arbitrary (possibly dense) valid
inequalities? (3) Are there polytopes that are difficult to approximate under
every rotation? (4) Are there polytopes that are difficult to approximate in
all directions using sparse inequalities? We answer each of the above questions
in the positive
Approximation Algorithms for Correlated Knapsacks and Non-Martingale Bandits
In the stochastic knapsack problem, we are given a knapsack of size B, and a
set of jobs whose sizes and rewards are drawn from a known probability
distribution. However, we know the actual size and reward only when the job
completes. How should we schedule jobs to maximize the expected total reward?
We know O(1)-approximations when we assume that (i) rewards and sizes are
independent random variables, and (ii) we cannot prematurely cancel jobs. What
can we say when either or both of these assumptions are changed?
The stochastic knapsack problem is of interest in its own right, but
techniques developed for it are applicable to other stochastic packing
problems. Indeed, ideas for this problem have been useful for budgeted learning
problems, where one is given several arms which evolve in a specified
stochastic fashion with each pull, and the goal is to pull the arms a total of
B times to maximize the reward obtained. Much recent work on this problem focus
on the case when the evolution of the arms follows a martingale, i.e., when the
expected reward from the future is the same as the reward at the current state.
What can we say when the rewards do not form a martingale?
In this paper, we give constant-factor approximation algorithms for the
stochastic knapsack problem with correlations and/or cancellations, and also
for budgeted learning problems where the martingale condition is not satisfied.
Indeed, we can show that previously proposed LP relaxations have large
integrality gaps. We propose new time-indexed LP relaxations, and convert the
fractional solutions into distributions over strategies, and then use the LP
values and the time ordering information from these strategies to devise a
randomized adaptive scheduling algorithm. We hope our LP formulation and
decomposition methods may provide a new way to address other correlated bandit
problems with more general contexts
Mixed-integer Quadratic Programming is in NP
Mixed-integer quadratic programming is the problem of optimizing a quadratic
function over points in a polyhedral set where some of the components are
restricted to be integral. In this paper, we prove that the decision version of
mixed-integer quadratic programming is in NP, thereby showing that it is
NP-complete. This is established by showing that if the decision version of
mixed-integer quadratic programming is feasible, then there exists a solution
of polynomial size. This result generalizes and unifies classical results that
quadratic programming is in NP and integer linear programming is in NP
- …