11 research outputs found

    Growth of three-dimensional structures by atomic deposition on surfaces containing defects : simulations and theory

    Full text link
    We perform a comprehensive study of the formation of three dimensional (pyramidal) structures in a large range of conditions, including the possible evaporation of adatoms from the surface and the presence of surface defects. We compare our computer simulations to theoretical calculations of the growth and find good agreement between them. This work clarifies precedent studies of three dimensional growth and predicts the island size distributions obtained in the different regimes. Finally, we show how our analysis can be used to interpret experimental data.Comment: 15 pages, Revtex. submitted to Surface Scienc

    The effect of monomer evaporation on a simple model of submonolayer growth

    Full text link
    We present a model for thin film growth by particle deposition that takes into account the possible evaporation of the particles deposited on the surface. Our model focuses on the formation of two-dimensional structures. We find that the presence of evaporation can dramatically affect the growth kinetics of the film, and can give rise to regimes characterized by different ``growth'' exponents and island size distributions. Our results are obtained by extensive computer simulations as well as through a simple scaling approach and the analysis of rate equations describing the system. We carefully discuss the relationship of our model with previous studies by Venables and Stoyanov of the same physical situation, and we show that our analysis is more general.Comment: 41 pages including figures, Revtex, to be published in Physical Review

    Large Isoforms of UNC-89 (Obscurin) Are Required for Muscle Cell Architecture and Optimal Calcium Release in Caenorhabditis elegans

    Get PDF
    Calcium, a ubiquitous intracellular signaling molecule, controls a diverse array of cellular processes. Consequently, cells have developed strategies to modulate the shape of calcium signals in space and time. The force generating machinery in muscle is regulated by the influx and efflux of calcium ions into the muscle cytoplasm. In order for efficient and effective muscle contraction to occur, calcium needs to be rapidly, accurately and reliably regulated. The mechanisms underlying this highly regulated process are not fully understood. Here, we show that the Caenorhabditis elegans homolog of the giant muscle protein obscurin, UNC-89, is required for normal muscle cell architecture. The large immunoglobulin domain-rich isoforms of UNC-89 are critical for sarcomere and sarcoplasmic reticulum organization. Furthermore, we have found evidence that this structural organization is crucial for excitation-contraction coupling in the body wall muscle, through the coordination of calcium signaling. Thus, our data implicates UNC-89 in maintaining muscle cell architecture and that this precise organization is essential for optimal calcium mobilization and efficient and effective muscle contraction
    corecore