221 research outputs found

    A search for technosignatures from 14 planetary systems in the Kepler field with the Green Bank Telescope at 1.15-1.73 GHz

    Full text link
    Analysis of Kepler mission data suggests that the Milky Way includes billions of Earth-like planets in the habitable zone of their host star. Current technology enables the detection of technosignatures emitted from a large fraction of the Galaxy. We describe a search for technosignatures that is sensitive to Arecibo-class transmitters located within ~420 ly of Earth and transmitters that are 1000 times more effective than Arecibo within ~13 000 ly of Earth. Our observations focused on 14 planetary systems in the Kepler field and used the L-band receiver (1.15-1.73 GHz) of the 100 m diameter Green Bank Telescope. Each source was observed for a total integration time of 5 minutes. We obtained power spectra at a frequency resolution of 3 Hz and examined narrowband signals with Doppler drift rates between +/-9 Hz/s. We flagged any detection with a signal-to-noise ratio in excess of 10 as a candidate signal and identified approximately 850 000 candidates. Most (99%) of these candidate signals were automatically classified as human-generated radio-frequency interference (RFI). A large fraction (>99%) of the remaining candidate signals were also flagged as anthropogenic RFI because they have frequencies that overlap those used by global navigation satellite systems, satellite downlinks, or other interferers detected in heavily polluted regions of the spectrum. All 19 remaining candidate signals were scrutinized and none were attributable to an extraterrestrial source.Comment: 15 pages, 5 figures, accepted for publication in the Astronomical Journa

    Genetic characterization of H5N1 influenza viruses isolated from chickens in Indonesia in 2010

    Get PDF
    Since 2003, highly pathogenic H5N1 avian influenza viruses have caused outbreaks among poultry in Indonesia every year, producing the highest number of human victims worldwide. However, little is known about the H5N1 influenza viruses that have been circulating there in recent years. We therefore conducted surveillance studies and isolated eight H5N1 viruses from chickens. Phylogenic analysis of their hemagglutinin and neuraminidase genes revealed that all eight viruses belonged to clade 2.1.3. However, on the basis of nucleotide differences, these viruses could be divided into two groups. Other viruses genetically closely related to these two groups of viruses were all Indonesian isolates, suggesting that these new isolates have been evolving within Indonesia. Among these viruses, two distinct viruses circulated in the Kalimantan islands during the same season in 2010. Our data reveal the continued evolution of H5N1 viruses in Indonesia

    Pure endoscopic endonasal odontoidectomy: anatomical study

    Get PDF
    Different disorders may produce irreducible atlanto-axial dislocation with compression of the ventral spinal cord. Among the surgical approaches available for a such condition, the transoral resection of the odontoid process is the most often used. The aim of this anatomical study is to demonstrate the possibility of an anterior cervico-medullary decompression through an endoscopic endonasal approach. Three fresh cadaver heads were used. A modified endonasal endoscopic approach was made in all cases. Endoscopic dissections were performed using a rigid endoscope, 4 mm in diameter, 18 cm in length, with 0 degree lenses. Access to the cranio-vertebral junction was possible using a lower trajectory, when compared to that necessary for the sellar region. The choana is entered and the mucosa of the rhinopharynx is dissected and transposed in the oral cavity in order to expose the cranio-vertebral junction and to obtain a mucosal flap useful for the closure. The anterior arch of the atlas and the odontoid process of C2 are removed, thus exposing the dura mater. The endoscopic endonasal approach could be a valid alternative to the transoral approach for anterior odontoidectomy

    Viral Mimicry of Cdc2/Cyclin-Dependent Kinase 1 Mediates Disruption of Nuclear Lamina during Human Cytomegalovirus Nuclear Egress

    Get PDF
    The nuclear lamina is a major obstacle encountered by herpesvirus nucleocapsids in their passage from the nucleus to the cytoplasm (nuclear egress). We found that the human cytomegalovirus (HCMV)-encoded protein kinase UL97, which is required for efficient nuclear egress, phosphorylates the nuclear lamina component lamin A/C in vitro on sites targeted by Cdc2/cyclin-dependent kinase 1, the enzyme that is responsible for breaking down the nuclear lamina during mitosis. Quantitative mass spectrometry analyses, comparing lamin A/C isolated from cells infected with viruses either expressing or lacking UL97 activity, revealed UL97-dependent phosphorylation of lamin A/C on the serine at residue 22 (Ser22). Transient treatment of HCMV-infected cells with maribavir, an inhibitor of UL97 kinase activity, reduced lamin A/C phosphorylation by approximately 50%, consistent with UL97 directly phosphorylating lamin A/C during HCMV replication. Phosphorylation of lamin A/C during viral replication was accompanied by changes in the shape of the nucleus, as well as thinning, invaginations, and discrete breaks in the nuclear lamina, all of which required UL97 activity. As Ser22 is a phosphorylation site of particularly strong relevance for lamin A/C disassembly, our data support a model wherein viral mimicry of a mitotic host cell kinase activity promotes nuclear egress while accommodating viral arrest of the cell cycle

    Variations on Fibrinogen-Erythrocyte Interactions during Cell Aging

    Get PDF
    Erythrocyte hyperaggregation, a cardiovascular risk factor, is considered to be caused by an increase in plasma adhesion proteins, particularly fibrinogen. We have recently reported a specific binding between fibrinogen and an erythrocyte integrin receptor with a β3 or β3-like subunit. In this study we evaluate the influence of erythrocyte aging on the fibrinogen binding. By atomic force microscopy-based force spectroscopy measurements we found that increasing erythrocyte age, there is a decrease of the binding to fibrinogen by decreasing the frequency of its occurrence but not its force. This observation is reinforced by zeta-potential and fluorescence spectroscopy measurements. We conclude that upon erythrocyte aging the number of fibrinogen molecules bound to each cell decreases significantly, due to the progressive impairment of the specific fibrinogen-erythrocyte receptor interaction. Knowing that younger erythrocytes bind more to fibrinogen, we could presume that this population is the main contributor to the cardiovascular diseases associated with increased fibrinogen content in blood, which could disturb the blood flow. Our data also show that the sialic acids exposed on the erythrocyte membrane contribute for the interaction with fibrinogen, possibly by facilitating its binding to the erythrocyte membrane receptor

    Ordinal-Level Phylogenomics of the Arthropod Class Diplopoda (Millipedes) Based on an Analysis of 221 Nuclear Protein-Coding Loci Generated Using Next-Generation Sequence Analyses

    Get PDF
    Background The ancient and diverse, yet understudied arthropod class Diplopoda, the millipedes, has a muddled taxonomic history. Despite having a cosmopolitan distribution and a number of unique and interesting characteristics, the group has received relatively little attention; interest in millipede systematics is low compared to taxa of comparable diversity. The existing classification of the group comprises 16 orders. Past attempts to reconstruct millipede phylogenies have suffered from a paucity of characters and included too few taxa to confidently resolve relationships and make formal nomenclatural changes. Herein, we reconstruct an ordinal-level phylogeny for the class Diplopoda using the largest character set ever assembled for the group. Methods Transcriptomic sequences were obtained from exemplar taxa representing much of the diversity of millipede orders using second-generation (i.e., next-generation or high-throughput) sequencing. These data were subject to rigorous orthology selection and phylogenetic dataset optimization and then used to reconstruct phylogenies employing Bayesian inference and maximum likelihood optimality criteria. Ancestral reconstructions of sperm transfer appendage development (gonopods), presence of lateral defense secretion pores (ozopores), and presence of spinnerets were considered. The timings of major millipede lineage divergence points were estimated. Results The resulting phylogeny differed from the existing classifications in a number of fundamental ways. Our phylogeny includes a grouping that has never been described (Juliformia+Merocheta+Stemmiulida), and the ancestral reconstructions suggest caution with respect to using spinnerets as a unifying characteristic for the Nematophora. Our results are shown to have significantly stronger support than previous hypotheses given our data. Our efforts represent the first step toward obtaining a well-supported and robust phylogeny of the Diplopoda that can be used to answer many questions concerning the evolution of this ancient and diverse animal group

    Export of a Toxoplasma gondii Rhoptry Neck Protein Complex at the Host Cell Membrane to Form the Moving Junction during Invasion

    Get PDF
    One of the most conserved features of the invasion process in Apicomplexa parasites is the formation of a moving junction (MJ) between the apex of the parasite and the host cell membrane that moves along the parasite and serves as support to propel it inside the host cell. The MJ was, up to a recent period, completely unknown at the molecular level. Recently, proteins originated from two distinct post-Golgi specialised secretory organelles, the micronemes (for AMA1) and the neck of the rhoptries (for RON2/RON4/RON5 proteins), have been shown to form a complex. AMA1 and RON4 in particular, have been localised to the MJ during invasion. Using biochemical approaches, we have identified RON8 as an additional member of the complex. We also demonstrated that all RON proteins are present at the MJ during invasion. Using metabolic labelling and immunoprecipitation, we showed that RON2 and AMA1 were able to interact in the absence of the other members. We also discovered that all MJ proteins are subjected to proteolytic maturation during trafficking to their respective organelles and that they could associate as non-mature forms in vitro. Finally, whereas AMA1 has previously been shown to be inserted into the parasite membrane upon secretion, we demonstrated, using differential permeabilization and loading of RON-specific antibodies into the host cell, that the RON complex is targeted to the host cell membrane, where RON4/5/8 remain associated with the cytoplasmic face. Globally, these results point toward a model of MJ organization where the parasite would be secreting and inserting interacting components on either side of the MJ, both at the host and at its own plasma membranes

    Cancer Cell Invasion Is Enhanced by Applied Mechanical Stimulation

    Get PDF
    Metastatic cells migrate from the site of the primary tumor, through the stroma, into the blood and lymphatic vessels, finally colonizing various other tissues to form secondary tumors. Numerous studies have been done to identify the stimuli that drive the metastatic cascade. This has led to the identification of multiple biochemical signals that promote metastasis. However, information on the role of mechanical factors in cancer metastasis has been limited to the affect of compliance. Interestingly, the tumor microenvironment is rich in many cell types including highly contractile cells that are responsible for extensive remodeling and production of the dense extracellular matrix surrounding the cancerous tissue. We hypothesize that the mechanical forces produced by remodeling activities of cells in the tumor microenvironment contribute to the invasion efficiency of metastatic cells. We have discovered a significant difference in the extent of invasion in mechanically stimulated verses non-stimulated cell culture environments. Furthermore, this mechanically enhanced invasion is dependent upon substrate protein composition, and influenced by topography. Finally, we have found that the protein cofilin is needed to sense the mechanical stimuli that enhances invasion. We conclude that other types of mechanical signals in the tumor microenvironment, besides the rigidity, can enhance the invasive abilities of cancer cells in vitro. We further propose that in vivo, non-cancerous cells located within the tumor micro-environment may be capable of providing the necessary mechanical stimulus during the remodeling of the extracellular matrix surrounding the tumor
    corecore