26 research outputs found
Stability Testing of Beclomethasone Dipropionate Nanoemulsion
Purpose: To perform stability studies on a nanoemulsion formulation containing beclomethasone dipropionate (BD) and prepared by spontaneous emulsification method.Method: A nanoemulsion (o/w) containing BD was prepared using eucalyptus oil, Tween-40, ethanol and distilled water. The nanoemulsions were characterized by droplet size, pH, viscosity, conductivity and refractive index. Stability studies were performed according to International Council on Harmonization (ICH) guidelines over a period of 3 months. Droplet size, pH, viscosity, conductivity and refractive index were determined monthly for 3 months. The shelf-life of the nanoemulsion formulation was determined by accelerated stability testing.Results: The droplet size, conductivity, viscosity, pH and refractive index of the optimized formulations did not change significantly (p ≥ 0.05) after 3 months of storage at room temperature (25 ºC). The shelf life was 1.83 years at room temperature.Conclusion: The study demonstrates that the physical and chemical stability of BD is enhanced when it is formulated as a nanoemulsion.Keywords: Nanoemulsion, Beclomethasone dipropionate, Shelf-life, Accelerated stability, Viscosity, Conductivity, Refractive inde
Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic
Introduction Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality. Methods Prospective cohort study in 109 institutions in 41 countries. Inclusion criteria: children <18 years who were newly diagnosed with or undergoing active treatment for acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, retinoblastoma, Wilms tumour, glioma, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, medulloblastoma and neuroblastoma. Of 2327 cases, 2118 patients were included in the study. The primary outcome measure was all-cause mortality at 30 days, 90 days and 12 months. Results All-cause mortality was 3.4% (n=71/2084) at 30-day follow-up, 5.7% (n=113/1969) at 90-day follow-up and 13.0% (n=206/1581) at 12-month follow-up. The median time from diagnosis to multidisciplinary team (MDT) plan was longest in low-income countries (7 days, IQR 3-11). Multivariable analysis revealed several factors associated with 12-month mortality, including low-income (OR 6.99 (95% CI 2.49 to 19.68); p<0.001), lower middle income (OR 3.32 (95% CI 1.96 to 5.61); p<0.001) and upper middle income (OR 3.49 (95% CI 2.02 to 6.03); p<0.001) country status and chemotherapy (OR 0.55 (95% CI 0.36 to 0.86); p=0.008) and immunotherapy (OR 0.27 (95% CI 0.08 to 0.91); p=0.035) within 30 days from MDT plan. Multivariable analysis revealed laboratory-confirmed SARS-CoV-2 infection (OR 5.33 (95% CI 1.19 to 23.84); p=0.029) was associated with 30-day mortality. Conclusions Children with cancer are more likely to die within 30 days if infected with SARS-CoV-2. However, timely treatment reduced odds of death. This report provides crucial information to balance the benefits of providing anticancer therapy against the risks of SARS-CoV-2 infection in children with cancer
Comportement de protocoles de routage sans fils de corps a corps pour la surete publique et le sauvetage dans un contexte de desastre.
International audienceCritical and public safety operations require real-time data transfer from the incident area(s) to the distant operations command center going through the evacuation and medical support areas. Any delay in communication may cause significant loss. In some cases, it is anticipated that the existing communication infrastructures can be damaged or out-of-service. It is thus required to deploy tactical ad-hoc networks to cover the operation zones. Routing data over the deployed network is a significant challenge with consideration to the operations conditions. In this paper we evaluate the performance of mutli-hop routing protocols while using different wireless technologies in an urban critical and emergency scenario. Using a realistic mobility model, Mobile Ad hoc, geographic based and data-centric routing protocols are evaluated with different communication technologies (i.e. WiFi IEEE 802.11; WSN IEEE 802.15.4; WBAN IEEE 802.15.6). It is concluded that, WiFi IEEE 802.11 is the best wireless technology with consideration to the packet reception rate and the energy consumption. Whereas, in terms of delay, WBAN IEEE 802.15.6 is the most efficient. With regards to the routing protocols, assuming that the location information is available, geographical based routing protocol with WiFi IEEE 802.11 performed much better compared to the others routing protocols. In case where the location information is unavailable, gradient based routing protocol with WBAN IEEE 802.15.6 seems the best combination
Comportement de protocoles de routage sans fils de corps a corps pour la surete publique et le sauvetage dans un contexte de desastre.
International audienceCritical and public safety operations require real-time data transfer from the incident area(s) to the distant operations command center going through the evacuation and medical support areas. Any delay in communication may cause significant loss. In some cases, it is anticipated that the existing communication infrastructures can be damaged or out-of-service. It is thus required to deploy tactical ad-hoc networks to cover the operation zones. Routing data over the deployed network is a significant challenge with consideration to the operations conditions. In this paper we evaluate the performance of mutli-hop routing protocols while using different wireless technologies in an urban critical and emergency scenario. Using a realistic mobility model, Mobile Ad hoc, geographic based and data-centric routing protocols are evaluated with different communication technologies (i.e. WiFi IEEE 802.11; WSN IEEE 802.15.4; WBAN IEEE 802.15.6). It is concluded that, WiFi IEEE 802.11 is the best wireless technology with consideration to the packet reception rate and the energy consumption. Whereas, in terms of delay, WBAN IEEE 802.15.6 is the most efficient. With regards to the routing protocols, assuming that the location information is available, geographical based routing protocol with WiFi IEEE 802.11 performed much better compared to the others routing protocols. In case where the location information is unavailable, gradient based routing protocol with WBAN IEEE 802.15.6 seems the best combination
Strategies de diffusion de donnees pour les reseaux corps a corps emergents bases Internet d'humains
International audienceWith the recent advent of Internet of Humans (IoH), wireless body-to-body networks (WBBNs) are emerging as the fundamental part of this new paradigm. In particular with reference to newly emerging applications, the research trends on data routing and dissemination strategies have gained a great interest in WBBN. In this paper, we present the performance evaluation of the clustered and distributed data dissemination approaches in tactical WBBN. We used a realistic radio-link and biomechanical mobility model for on-body motions, and group mobility model for WBBN to effectively realize rescue and emergency management application scenario. In this regard, we are using the newly proposed IEEE 802.15.6 standard targeted for body area networks. Extensive (IEEE 802.15.6 standard compliance) network level, packet oriented simulations are conducted in WSNet simulator. During the simulations, various payloads, frequencies (narrow-band) and modulation techniques are exploited. We based our performance evaluation on relevant metrics according to the operational requirements for tactical networks such as packet reception ratio, latency, energy consumption and hop count. The results showed a trade-offs between clustered-based and distributed-based dissemination approaches. With regards to packet delay, distributed approach provided the best performance. However, in terms of average packet reception ratio (PRR), clustered-based approach achieves up to 97% reception and remained the best strategy. Whereas, the results of the hop count and energy consumption are almost comparable in both schemes
Strategies de diffusion de donnees pour les reseaux corps a corps emergents bases Internet d'humains
International audienceWith the recent advent of Internet of Humans (IoH), wireless body-to-body networks (WBBNs) are emerging as the fundamental part of this new paradigm. In particular with reference to newly emerging applications, the research trends on data routing and dissemination strategies have gained a great interest in WBBN. In this paper, we present the performance evaluation of the clustered and distributed data dissemination approaches in tactical WBBN. We used a realistic radio-link and biomechanical mobility model for on-body motions, and group mobility model for WBBN to effectively realize rescue and emergency management application scenario. In this regard, we are using the newly proposed IEEE 802.15.6 standard targeted for body area networks. Extensive (IEEE 802.15.6 standard compliance) network level, packet oriented simulations are conducted in WSNet simulator. During the simulations, various payloads, frequencies (narrow-band) and modulation techniques are exploited. We based our performance evaluation on relevant metrics according to the operational requirements for tactical networks such as packet reception ratio, latency, energy consumption and hop count. The results showed a trade-offs between clustered-based and distributed-based dissemination approaches. With regards to packet delay, distributed approach provided the best performance. However, in terms of average packet reception ratio (PRR), clustered-based approach achieves up to 97% reception and remained the best strategy. Whereas, the results of the hop count and energy consumption are almost comparable in both schemes
Correction: Quantification of glucose-6-phosphate dehydrogenase activity by spectrophotometry: A systematic review and meta-analysis.
[This corrects the article DOI: 10.1371/journal.pmed.1003084.]
Genomics, social media and mobile phone data enable mapping of SARS-CoV-2 lineages to inform health policy in Bangladesh
Genomics, combined with population mobility data, used to map importation and spatial spread of SARS-CoV-2 in high-income countries has enabled the implementation of local control measures. Here, to track the spread of SARS-CoV-2 lineages in Bangladesh at the national level, we analysed outbreak trajectory and variant emergence using genomics, Facebook ‘Data for Good’ and data from three mobile phone operators. We sequenced the complete genomes of 67 SARS-CoV-2 samples (collected by the IEDCR in Bangladesh between March and July 2020) and combined these data with 324 publicly available Global Initiative on Sharing All Influenza Data (GISAID) SARS-CoV-2 genomes from Bangladesh at that time. We found that most (85%) of the sequenced isolates were Pango lineage B.1.1.25 (58%), B.1.1 (19%) or B.1.36 (8%) in early-mid 2020. Bayesian time-scaled phylogenetic analysis predicted that SARS-CoV-2 first emerged during mid-February in Bangladesh, from abroad, with the first case of coronavirus disease 2019 (COVID-19) reported on 8 March 2020. At the end of March 2020, three discrete lineages expanded and spread clonally across Bangladesh. The shifting pattern of viral diversity in Bangladesh, combined with the mobility data, revealed that the mass migration of people from cities to rural areas at the end of March, followed by frequent travel between Dhaka (the capital of Bangladesh) and the rest of the country, disseminated three dominant viral lineages. Further analysis of an additional 85 genomes (November 2020 to April 2021) found that importation of variant of concern Beta (B.1.351) had occurred and that Beta had become dominant in Dhaka. Our interpretation that population mobility out of Dhaka, and travel from urban hotspots to rural areas, disseminated lineages in Bangladesh in the first wave continues to inform government policies to control national case numbers by limiting within-country travel