86 research outputs found

    A Non-Invasive method of quantifying pancreatic volume in mice using micro-MRI

    Get PDF
    In experimental models of pancreatic growth and recovery, changes in pancreatic size are assessed by euthanizing a large cohort of animals at varying time points and measuring organ mass. However, to ascertain this information in clinical practice, patients with pancreatic disorders routinely undergo non-invasive cross-sectional imaging of the pancreas using magnetic resonance imaging (MRI) or computed tomography (CT). The aim of the current study was to develop a thinsliced, optimized sequence protocol using a high field MRI to accurately calculate pancreatic volumes in the most common experimental animal, the mouse. Using a 7 Telsa Bruker micro-MRI system, we performed abdominal imaging in whole-fixed mice in three standard planes: axial, sagittal, and coronal. The contour of the pancreas was traced using Vitrea software and then transformed into a 3-dimensional (3D) reconstruction, from which volumetric measurements were calculated. Images were optimized using heart perfusion-fixation, T1 sequence analysis, and 0.2 to 0.4 mm thick slices. As proof of principle, increases in pancreatic volume among mice of different ages correlated tightly with increasing body weight. In summary, this is the first study to measure pancreatic volumes in mice, using a high field 7 Tesla micro-MRI and a thin-sliced, optimized sequence protocol. We anticipate that micro-MRI will improve the ability to non-invasively quantify changes in pancreatic size and will dramatically reduce the number of animals required to serially assess pancreatic growth and recovery.© 2014 Paredes et al

    Bioactivity of miltefosine against aquatic stages of Schistosoma mansoni, Schistosoma haematobium and their snail hosts, supported by scanning electron microscopy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Miltefosine, which is the first oral drug licensed for the treatment of leishmaniasis, was recently reported to be a promising lead compound for the synthesis of novel antischistosomal derivatives with potent activity <it>in vivo </it>against different developmental stages of <it>Schistosoma mansoni</it>. In this paper an <it>in vitro </it>study was carried out to investigate whether it has a biocidal activity against the aquatic stages of <it>Schistosoma mansoni </it>and its snail intermediate host, <it>Biomphalaria alexandrina </it>, thus being also a molluscicide. Additionally, to see whether miltefosine can have a broad spectrum antischistosomal activity, a similar <it>in vitro </it>study was carried out on the adult stage of <it>Schistosoma haematobium</it>, the second major human species, its larval stages and snail intermediate host, <it>Bulinus truncutes</it>. This was checked by scanning electron microscopy.</p> <p>Results</p> <p>Miltefosine proved to have <it>in vitro </it>ovicidal, schistolarvicidal and lethal activity on adult worms of both <it>Schistosoma </it>species and has considerable molluscicidal activity on their snail hosts. Scanning electron microscopy revealed several morphological changes on the different stages of the parasite and on the soft body of the snail, which further strengthens the current evidence of miltefosine's activity. This is the first report of mollusicidal activity of miltefosine and its <it>in vitro </it>schistosomicidal activity against <it>S.haematobium</it>.</p> <p>Conclusions</p> <p>This study highlights miltefosine not only as a potential promising lead compound for the synthesis of novel broad spectrum schistosomicidal derivatives, but also for molluscicidals.</p

    A programme theory for liaison mental health services in England

    Get PDF
    Background: Mechanisms by which liaison mental health services (LMHS) may bring about improved patient and organisational outcomes are poorly understood. A small number of logic models have been developed, but they fail to capture the complexity of clinical practice. Method: We synthesised data from a variety of sources including a large national survey, 73 in-depth interviews with acute and liaison staff working in hospitals with different types of liaison mental health services, and relevant local, national and international literature. We generated logic models for two common performance indicators used to assess organisational outcomes for LMHS: response times in the emergency department and hospital length of stay for people with mental health problems. Results: We identified 8 areas of complexity that influence performance, and 6 trade-offs which drove the models in different directions depending upon the balance of the trade-off. The logic models we developed could only be captured by consideration of more than one pass through the system, the complexity in which they operated, and the trade-offs that occurred. Conclusions: Our findings are important for commissioners of liaison services. Reliance on simple target setting may result in services that are unbalanced and not patient-centred. Targets need to be reviewed on a regular basis, together with other data that reflect the wider impact of the service, and any external changes in the system that affect the performance of LMHS, which are beyond their control

    Zelda Binding in the Early Drosophila melanogaster Embryo Marks Regions Subsequently Activated at the Maternal-to-Zygotic Transition

    Get PDF
    The earliest stages of development in most metazoans are driven by maternally deposited proteins and mRNAs, with widespread transcriptional activation of the zygotic genome occurring hours after fertilization, at a period known as the maternal-to-zygotic transition (MZT). In Drosophila, the MZT is preceded by the transcription of a small number of genes that initiate sex determination, patterning, and other early developmental processes; and the zinc-finger protein Zelda (ZLD) plays a key role in their transcriptional activation. To better understand the mechanisms of ZLD activation and the range of its targets, we used chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) to map regions bound by ZLD before (mitotic cycle 8), during (mitotic cycle 13), and after (late mitotic cycle 14) the MZT. Although only a handful of genes are transcribed prior to mitotic cycle 10, we identified thousands of regions bound by ZLD in cycle 8 embryos, most of which remain bound through mitotic cycle 14. As expected, early ZLD-bound regions include the promoters and enhancers of genes transcribed at this early stage. However, we also observed ZLD bound at cycle 8 to the promoters of roughly a thousand genes whose first transcription does not occur until the MZT and to virtually all of the thousands of known and presumed enhancers bound at cycle 14 by transcription factors that regulate patterned gene activation during the MZT. The association between early ZLD binding and MZT activity is so strong that ZLD binding alone can be used to identify active promoters and regulatory sequences with high specificity and selectivity. This strong early association of ZLD with regions not active until the MZT suggests that ZLD is not only required for the earliest wave of transcription but also plays a major role in activating the genome at the MZT

    An International Multi-Center Evaluation of Type 5 Long QT Syndrome: A Low Penetrant Primary Arrhythmic Condition.

    Get PDF
    Background: Insight into type 5 long QT syndrome (LQT5) has been limited to case reports and small family series. Improved understanding of the clinical phenotype and genetic features associated with rare KCNE1 variants implicated in LQT5 was sought through an international multi-center collaboration. Methods: Patients with either presumed autosomal dominant LQT5 (N = 229) or the recessive Type 2 Jervell and Lange-Nielsen syndrome (JLNS2, N = 19) were enrolled from 22 genetic arrhythmia clinics and 4 registries from 9 countries. KCNE1 variants were evaluated for ECG penetrance (defined as QTc > 460ms on presenting ECG) and genotype-phenotype segregation. Multivariable Cox regression was used to compare the associations between clinical and genetic variables with a composite primary outcome of definite arrhythmic events, including appropriate implantable cardioverter-defibrillator shocks, aborted cardiac arrest, and sudden cardiac death. Results: A total of 32 distinct KCNE1 rare variants were identified in 89 probands and 140 genotype positive family members with presumed LQT5 and an additional 19 JLNS2 patients. Among presumed LQT5 patients, the mean QTc on presenting ECG was significantly longer in probands (476.9 ± 38.6ms) compared to genotype positive family members (441.8 ± 30.9ms, p<0.001). ECG penetrance for heterozygous genotype positive family members was 20.7% (29/140). A definite arrhythmic event was experienced in 16.9% (15/89) of heterozygous probands in comparison with 1.4% (2/140) of family members (adjusted hazard ratio [HR]: 11.6, 95% confidence interval [CI]: 2.6-52.2; p=0.001). Event incidence did not differ significantly for JLNS2 patients relative to the overall heterozygous cohort (10.5% [2/19]; HR: 1.7, 95% CI: 0.3-10.8, p=0.590). The cumulative prevalence of the 32 KCNE1 variants in the Genome Aggregation Database (gnomAD), which is a human database of exome and genome sequencing data from now over 140,000 individuals, was 238-fold greater than the anticipated prevalence of all LQT5 combined (0.238% vs. 0.001%). Conclusions: The present study suggests that putative/confirmed loss-of-function KCNE1 variants predispose to QT-prolongation, however the low ECG penetrance observed suggests they do not manifest clinically in the majority of individuals, aligning with the mild phenotype observed for JLNS2 patients

    NF-κB: a new player in angiostatic therapy

    Get PDF
    Angiogenesis is considered a promising target in the treatment of cancer. Most of the angiogenesis inhibitors in late-stage clinical testing or approved for the treatment of cancer act indirectly on endothelial cells. They either neutralize angiogenic growth factors from the circulation or block the signaling pathways activated by these growth factors. Another group of angiogenesis inhibitors are the direct angiostatic compounds. These agents have a direct effect on the endothelium, affecting cellular regulatory pathways, independently of the tumor cells. The reason that this category of agents is lagging behind regarding their translation to the clinic may be the lack of sufficient knowledge on the mechanism of action of these compounds. The transcription factor NF-κB has been recently connected with multiple aspects of angiogenesis. In addition, several recent studies report that angiogenesis inhibition is associated to NF-κB activation. This is of special interest since in tumor cells NF-κB activation has been associated to inhibition of apoptosis and currently novel treatment strategies are being developed based on inhibition of NF-κB. The paradigm that systemic NF-κB inhibition can serve as an anti-cancer strategy, therefore, might need to be re-evaluated. Based on recent data, it might be speculated that NF-κB activation, when performed specifically in endothelial cells, could be an efficient strategy for the treatment of cancer

    Low potency toxins reveal dense interaction networks in metabolism

    Get PDF
    Background The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs. Results Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function. Conclusions The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved

    Temporal Coordination of Gene Networks by Zelda in the Early Drosophila Embryo

    Get PDF
    In past years, much attention has focused on the gene networks that regulate early developmental processes, but less attention has been paid to how multiple networks and processes are temporally coordinated. Recently the discovery of the transcriptional activator Zelda (Zld), which binds to CAGGTAG and related sequences present in the enhancers of many early-activated genes in Drosophila, hinted at a mechanism for how batteries of genes could be simultaneously activated. Here we use genome-wide binding and expression assays to identify Zld target genes in the early embryo with the goal of unraveling the gene circuitry regulated by Zld. We found that Zld binds to genes involved in early developmental processes such as cellularization, sex determination, neurogenesis, and pattern formation. In the absence of Zld, many target genes failed to be activated, while others, particularly the patterning genes, exhibited delayed transcriptional activation, some of which also showed weak and/or sporadic expression. These effects disrupted the normal sequence of patterning-gene interactions and resulted in highly altered spatial expression patterns, demonstrating the significance of a timing mechanism in early development. In addition, we observed prevalent overlap between Zld-bound regions and genomic “hotspot” regions, which are bound by many developmental transcription factors, especially the patterning factors. This, along with the finding that the most over-represented motif in hotspots, CAGGTA, is the Zld binding site, implicates Zld in promoting hotspot formation. We propose that Zld promotes timely and robust transcriptional activation of early-gene networks so that developmental events are coordinated and cell fates are established properly in the cellular blastoderm embryo
    corecore