54 research outputs found
Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress
In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse
Synaptic Depression Via Mglur1 Positive Allosteric Modulation Suppresses Cue-Induced Cocaine Craving
Cue-induced cocaine craving is a major cause of relapse in abstinent addicts. In rats, cue-induced craving progressively intensifies (incubates) during withdrawal from extended-access cocaine self-administration. After ~1 month of withdrawal, incubated craving is mediated by Ca(2+)-permeable AMPA receptors (CP-AMPARs) that accumulate in the nucleus accumbens (NAc). We found that decreased mGluR1 surface expression in the NAc preceded and enabled CP-AMPAR accumulation. Thus, restoring mGluR1 transmission by administering repeated injections of an mGluR1 positive allosteric modulator (PAM) prevented CP-AMPAR accumulation and incubation, whereas blocking mGluR1 transmission at even earlier withdrawal times accelerated CP-AMPAR accumulation. In studies conducted after prolonged withdrawal, when CP-AMPAR levels and cue-induced craving are high, we found that systemic administration of an mGluR1 PAM attenuated the expression of incubated craving by reducing CP-AMPAR transmission in the NAc to control levels. These results suggest a strategy in which recovering addicts could use a systemically active compound to protect against cue-induced relapse
Role of nucleus accumbens core but not shell in incubation of methamphetamine craving after voluntary abstinence
We recently introduced an animal model to study incubation of drug craving after prolonged voluntary abstinence, mimicking the human condition of relapse after successful contingency management treatment. Here we studied the role of the nucleus accumbens (NAc) in this model.
We trained rats to self-administer a palatable solution (sucrose+maltodextrin 1%, 6 h/day, 6 days) and methamphetamine (6 h/day, 12 days). We then evaluated relapse to methamphetamine seeking after 1 and 15 days of voluntary abstinence, achieved via a discrete choice procedure between the palatable solution and methamphetamine (14 days). We used RNAscope in-situ hybridization to quantify the co-labeling of the neuronal activity marker Fos, and dopamine Drd1- and Drd2-expressing medium spiny neurons (MSNs) in NAc core and shell during the incubation tests. Next, we determined the effect of pharmacological inactivation of NAc core and shell by either GABAA and GABAB agonists (muscimol+baclofen, 50+50 ng/side), Drd1-Drd2 antagonist (flupenthixol, 10 µg/side) or the selective Drd1 or Drd2 antagonists (SCH39166 1.0 µg/side or raclopride 1.0 µg/side) during the relapse tests.
Incubated methamphetamine seeking after voluntary abstinence was associated with a selective increase of Fos expression in the NAc core, but not shell, and Fos was co-labeled with both Drd1- and Drd2-MSNs. NAc core, but not shell, injections of muscimol+baclofen, flupenthixol, SCH39166, and raclopride reduced methamphetamine seeking after 15 days of abstinence.
Together, our results suggest that dopamine transmission through Drd1 and Drd2 in NAc core is critical to the incubation of methamphetamine craving after voluntary abstinence
New technologies for examining neuronal ensembles in drug addiction and fear
Correlational data suggest that learned associations are encoded within neuronal ensembles. However, it has been difficult to prove that neuronal ensembles mediate learned behaviours because traditional pharmacological and lesion methods, and even newer cell type-specific methods, affect both activated and non-activated neurons. Additionally, previous studies on synaptic and molecular alterations induced by learning did not distinguish between behaviourally activated and non-activated neurons. Here, we describe three new approaches—Daun02 inactivation, FACS sorting of activated neurons and c-fos-GFP transgenic rats — that have been used to selectively target and study activated neuronal ensembles in models of conditioned drug effects and relapse. We also describe two new tools — c-fos-tTA mice and inactivation of CREB-overexpressing neurons — that have been used to study the role of neuronal ensembles in conditioned fear
Differential hepatotoxicity of dietary and DNL-derived palmitate in the methionine-choline-deficient model of steatohepatitis
© 2015 Pierce et al. Background: Saturated fatty acids are toxic to liver cells and are believed to play a central role in the pathogenesis of non-alcoholic steatohepatitis. In experimental steatohepatitis induced by feeding mice a methionine-choline-defi
Linking endoplasmic reticulum stress to cell death in hepatocytes: roles of C/EBP homologous protein and chemical chaperones in palmitate-mediated cell death
Prolonged endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) have been linked to apoptosis via several mechanisms, including increased expression of C/EBP homologous protein (Chop). Increased long-chain fatty acids, in particular saturated fatty acids, induce ER stress, Chop expression, and apoptosis in liver cells. The first aim of the present study was to determine the role of Chop in lipid-induced hepatocyte cell death and liver injury induced by a methionine-choline-deficient diet. Albumin-bound palmitate increased Chop gene and protein expression in a dose-dependent fashion in H4IIE liver cells. siRNA-mediated silencing of Chop in H4IIE liver cells reduced thapsigargin-mediated cell death by ∼40% and delayed palmitate-mediated cell death, but only at high concentrations of palmitate (400–500 μM). Similar results were observed in primary hepatocytes isolated from Chop-knockout mice. Indices of liver injury were also not reduced in Chop-knockout mice provided a methionine-choline-deficient diet. To ascertain whether ER stress was linked to palmitate-induced cell death, primary hepatocytes were incubated in the absence or presence of the chemical chaperones taurine-conjugated ursodeoxycholic acid or 4-phenylbutyric acid. The presence of either of these chemical chaperones protected liver cells from palmitate-mediated ER stress and cell death, in part, via inhibition of JNK activation. These data suggest that ER stress is linked to palmitate-mediated cell death via mechanisms that include JNK activation
- …