15 research outputs found
Sensorimotor Experience Influences Recovery of Forelimb Abilities but Not Tissue Loss after Focal Cortical Compression in Adult Rats
Sensorimotor activity has been shown to play a key role in functional outcome after extensive brain damage. This study was aimed at assessing the influence of sensorimotor experience through subject-environment interactions on the time course of both lesion and gliosis volumes as well as on the recovery of forelimb sensorimotor abilities following focal cortical injury. The lesion consisted of a cortical compression targeting the forepaw representational area within the primary somatosensory cortex of adult rats. After the cortical lesion, rats were randomly subjected to various postlesion conditions: unilateral C5âC6 dorsal root transection depriving the contralateral cortex from forepaw somatosensory inputs, standard housing or an enriched environment promoting sensorimotor experience and social interactions. Behavioral tests were used to assess forelimb placement during locomotion, forelimb-use asymmetry, and forepaw tactile sensitivity. For each group, the time course of tissue loss was described and the gliosis volume over the first postoperative month was evaluated using an unbiased stereological method. Consistent with previous studies, recovery of behavioral abilities was found to depend on post-injury experience. Indeed, increased sensorimotor activity initiated early in an enriched environment induced a rapid and more complete behavioral recovery compared with standard housing. In contrast, severe deprivation of peripheral sensory inputs led to a delayed and only partial sensorimotor recovery. The dorsal rhizotomy was found to increase the perilesional gliosis in comparison to standard or enriched environments. These findings provide further evidence that early sensory experience has a beneficial influence on the onset and time course of functional recovery after focal brain injury
[F-18]-Fluoro-2-deoxy-D-glucose positron emission tomography as a tool for early detection of immunotherapy response in a murine B cell lymphoma model.
[F-18]-fluoro-2-deoxy-D: -glucose positron emission tomography (FDG-PET) is a non-invasive imaging technique which has recently been validated for the assessment of therapy response in patients with aggressive non-Hodgkin's lymphoma. Our objective was to determine its value for the evaluation of immunotherapy efficacy in immunocompetent Balb/c mice injected with the A20 syngeneic B lymphoma cell line. The high level of in vitro FDG uptake by A20 cells validated the model for further imaging studies. When injected intravenously, the tumour developed as nodular lesions mostly in liver and spleen, thus mimicking the natural course of an aggressive human lymphoma. FDG-PET provided three-dimensionnal images of tumour extension including non-palpable lesions, in good correlation with ex vivo macroscopic examination. When mice were pre-immunized with an A20 cell lysate in adjuvant before tumour challenge, their significantly longer survival, compared to control mice, were associated with a lower incidence of lymphoma visualized by PET at different time points. Estimation of tumour growth and metabolism using the calculated tumour volumes and maximum standardized uptake values, respectively, also demonstrated delayed lymphoma development and lower activity in the vaccinated mice. Thus, FDG-PET is a sensitive tool relevant for early detection and follow-up of internal tumours, allowing discrimination between treated and non-treated small animal cohorts without invasive intervention
Effects of experimental housing conditions on recovery of laboratory mice
The beneficial effects of environment and social support during disease recovery in humans are widely accepted. Because laboratory mice are social animals and are highly motivated to interact with each other and with their environment, it is very likely that environmental and social factors are also beneficial to their recovery from experimental interventions or spontaneous diseases. The beneficial effects of enriched environments have been particularly well analyzed in the field of brain disorders, but several studies suggest that positive social contact and a complex and familiar environment may also support recovery from injury, from invasive procedures such as surgery or from spontaneously occurring diseases. The author reviews relevant publications on the effects of environment and social housing on recovery from disease or surgery in laboratory mice and other rodents. She concludes that in addition to promoting animal welfare, provision of optimal experimental housing conditions might also contribute to the clinical relevance of preclinical animal models by more closely simulating the environmental and social characteristics of disease recovery in humans