26 research outputs found

    Use of a total traffic count metric to investigate the impact of roadways on asthma severity: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study had two principal objectives: (i) to investigate the relationship between asthma severity and proximity to major roadways in Perth, Western Australia; (ii) to demonstrate a more accurate method of exposure assessment for traffic pollutants using an innovative GIS-based measure that fully integrates all traffic densities around subject residences.</p> <p>Methods</p> <p>We conducted a spatial case-control study, in which 'cases' were defined as individuals aged under 19 years of age with more severe asthma (defined here as two or more emergency department contacts with asthma in a defined 5-year period) versus age- and gender-matched 'controls' with less severe asthma (defined here as one emergency department contact for asthma). Traffic exposures were measured using a GIS-based approach to determine the lengths of the roads falling within a buffer area, and then multiplying them by their respective traffic counts.</p> <p>Results</p> <p>We examined the spatial relationship between emergency department contacts for asthma at three different buffer sizes: 50 metres, 100 metres and 150 metres. No effect was noted for the 50 metre buffer (OR = 1.07; 95% CI: 0.91-1.26), but elevated odds ratios were observed with for crude (unadjusted) estimates OR = 1.21 (95% CI: 1.00-1.46) for 100 metre buffers and OR = 1.25 (95% CI: 1.02-1.54) for 150 metre buffers. For adjusted risk estimates, only the 150 metre buffer yielded a statistically significant finding (OR = 1.24; 95% CI:1.00-1.52).</p> <p>Conclusions</p> <p>Our study revealed a significant 24% increase in the risk of experiencing multiple emergency department contacts for asthma for every log-unit of traffic exposure. This study provides support for the hypothesis that traffic related air pollution increases the frequency of health service contacts for asthma. This study used advanced GIS techniques to establish traffic-weighted buffer zones around the geocoded residential location of subjects to provide an accurate assessment of exposure to traffic emissions, thereby providing a quantification of the ranges over which pollutants may exert a health effect.</p

    Methods for Monitoring Matrix-Induced Autophagy.

    Get PDF
    A growing body of research demonstrates modulation of autophagy by a variety of matrix constituents, including decorin, endorepellin, and endostatin. These matrix proteins are both pro-autophagic and anti-angiogenic. Here, we detail a series of methods to monitor matrix-induced autophagy and its concurrent effects on angiogenesis. We first discuss cloning and purifying proteoglycan fragment and core proteins in the laboratory and review relevant techniques spanning from cell culture to treatment with these purified proteoglycans in vitro and ex vivo. Further, we cover protocols in monitoring autophagic progression via morphological and microscopic characterization, biochemical western blot analysis, and signaling pathway investigation. Downstream angiogenic effects using in vivo approaches are then discussed using wild-type mice and the GFP-LC3 transgenic mouse model. Finally, we explore matrix-induced mitophagy via monitoring changes in mitochondrial DNA and permeability

    Vascular Occlusions and Parenchymal Embolizations: Principles

    No full text

    Reactive oxygen species mediate high glucose-induced heparanase-1 production and heparan sulphate proteoglycan degradation in human and rat endothelial cells: a potential role in the pathogenesis of atherosclerosis.

    No full text
    Item does not contain fulltextAIMS/HYPOTHESIS: The content of heparan sulphate is reduced in the endothelium under hyperglycaemic conditions and may contribute to the pathogenesis of atherosclerosis. Heparanase-1 (HPR1) specifically degrades heparan sulphate proteoglycans. We therefore sought to determine whether: (1) heparan sulphate reduction in endothelial cells is due to increased HPR1 production through increased reactive oxygen species (ROS) production; and (2) HPR1 production is increased in vivo in endothelial cells under hyperglycaemic and/or atherosclerotic conditions. METHODS: HPR1 mRNA and protein levels in endothelial cells were analysed by RT-PCR and Western blot or HPR1 enzymatic activity assay, respectively. Cell surface heparan sulphate levels were analysed by FACS. HPR1 in the artery from control rats and a rat model of diabetes, and from patients under hyperglycaemic and/or atherosclerotic conditions was immunohistochemically examined. RESULTS: High-glucose-induced HPR1 production and heparan sulphate degradation in three human endothelial cell lines, both of which were blocked by ROS scavengers, glutathione and N-acetylcysteine. Exogenous H(2)O(2) induced HPR1 production, subsequently leading to decreased cell surface heparan sulphate levels. HPR1 content was significantly increased in endothelial cells in the arterial walls of a rat model of diabetes. Clinical studies revealed that HPR1 production was increased in endothelial cells under hyperglycaemic conditions, and in endothelial cells and macrophages in atherosclerotic lesions. CONCLUSIONS/INTERPRETATION: Hyperglycaemia induces HPR1 production and heparan sulphate degradation in endothelial cells through ROS. HPR1 production is increased in endothelial cells from a rat model of diabetes, and in macrophages in the atherosclerotic lesions of diabetic and non-diabetic patients. Increased HPR1 production may contribute to the pathogenesis and progression of atherosclerosis.1 juni 201
    corecore