26 research outputs found
Endosomal MR1 Trafficking Plays a Key Role in Presentation of Mycobacterium tuberculosis Ligands to MAIT Cells
Mucosal-Associated Invariant T (MAIT) cells, present in high frequency in airway and other mucosal tissues, have Th1 effector capacity positioning them to play a critical role in the early immune response to intracellular pathogens, including Mycobacterium tuberculosis (Mtb). MR1 is a highly conserved Class I-like molecule that presents vitamin B metabolites to MAIT cells. The mechanisms for loading these ubiquitous small molecules are likely to be tightly regulated to prevent inappropriate MAIT cell activation. To define the intracellular localization of MR1, we analyzed the distribution of an MR1-GFP fusion protein in antigen presenting cells. We found that MR1 localized to endosomes and was translocated to the cell surface upon addition of 6-formyl pterin (6-FP). To understand the mechanisms by which MR1 antigens are presented, we used a lentiviral shRNA screen to identify trafficking molecules that are required for the presentation of Mtb antigen to HLA-diverse T cells. We identified Stx18, VAMP4, and Rab6 as trafficking molecules regulating MR1-dependent MAIT cell recognition of Mtb-infected cells. Stx18 but not VAMP4 or Rab6 knockdown also resulted in decreased 6-FP-dependent surface translocation of MR1 suggesting distinct pathways for loading of exogenous ligands and intracellular mycobacterially-derived ligands. We postulate that endosome-mediated trafficking of MR1 allows for selective sampling of the intracellular environment.Career Development Award: (#IK2 CX000538); U.S. Department of Veterans Affairs Clinical Sciences Research and Development Program (MJH); U.S.Department of Veterans Affairs Biomedical Laboratory Research and Development Program (DML) Merit Award: (#I01 BX000533); American Lung Association: (RT-350058)
A higher activation threshold of memory CD8+ T cells has a fitness cost that is modified by TCR affinity during Tuberculosis
All relevant data are within the paper and its Supporting Information files except for the primary TCR sequences. The data files for the primary TCR sequences are publicly deposited in the University of Massachusetts Medical School’s institutional repository, eScholarship@UMMS. The permanent link to the
data is http://dx.doi.org/10.13028/M2CC70T cell vaccines against Mycobacterium tuberculosis (Mtb) and other pathogens are based on the principle that memory T cells rapidly generate effector responses upon challenge, leading to pathogen clearance. Despite eliciting a robust memory CD8+ T cell response to the immunodominant Mtb antigen TB10.4 (EsxH), we find the increased frequency of TB10.4-specific CD8+ T cells conferred by vaccination to be short-lived after Mtb challenge. To compare memory and naïve CD8+ T cell function during their response to Mtb, we track their expansions using TB10.4-specific retrogenic CD8+ T cells. We find that the primary (naïve) response outnumbers the secondary (memory) response during Mtb challenge, an effect moderated by increased TCR affinity. To determine whether the expansion of polyclonal memory T cells is restrained following Mtb challenge, we used TCRβ deep sequencing to track TB10.4-specific CD8+ T cells after vaccination and subsequent challenge in intact mice. Successful memory T cells, defined by their clonal expansion after Mtb challenge, express similar CDR3β sequences suggesting TCR selection by antigen. Thus, both TCR-dependent and -independent factors affect the fitness of memory CD8+ responses. The impaired expansion of the majority of memory T cell clonotypes may explain why some TB vaccines have not provided better protection.This work was supported by NIH R01 AI106725 as well as fellowship funding to SC from NIH AI T32 007061 and the UMass GSBS Millennium Program. The Small Animal Biocontainment Suite was supported in part by Center for AIDS Research Grant P30 AI 060354. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio
Optimizing the Protection of Cattle against Escherichia coli O157: H7 Colonization through Immunization with Different Combinations of H7 Flagellin, Tir, Intimin-531 or EspA
Enterohemorrhagic Escherichia coli (EHEC) are important human pathogens, causing hemorrhagic colitis and hemolytic uraemic syndrome in humans. E. coli O157:H7 is the most common serotype associated with EHEC infections worldwide, although other non-O157 serotypes cause life-threatening infections. Cattle are a main reservoir of EHEC and intervention strategies aimed at limiting EHEC excretion from cattle are predicted to lower the risk of human infection. We have previously shown that immunization of calves with recombinant versions of the type III secretion system (T3SS)-associated proteins EspA, intimin and Tir from EHEC O157:H7 significantly reduced shedding of EHEC O157 from experimentally-colonized calves, and that protection could be augmented by the addition of H7 flagellin to the vaccine formulation. The main aim of the present study was to optimize our current EHEC O157 subunit vaccine formulations by identifying the key combinations of these antigens required for protection. A secondary aim was to determine if vaccine-induced antibody responses exhibited cross-reactive potential with antigens from other EHEC serotypes. Immunization with EspA, intimin and Tir resulted in a reduction in mean EHEC O157 shedding following challenge, but not the mean proportion of calves colonized. Removal of Tir resulted in more prolonged shedding compared with all other groups, whereas replacement of Tir with H7 flagellin resulted in the highest levels of protection, both in terms of reducing both mean EHEC O157 shedding and the proportion of colonized calves. Immunization of calves with recombinant EHEC O157 EspA, intimin and Tir resulted in the generation of antibodies capable of cross-reacting with antigens from non-O157 EHEC serotypes, suggesting that immunization with these antigens may provide a degree of cross-protection against other EHEC serotypes. Further studies are now required to test the efficacy of these vaccines in the field, and to formally test the cross-protective potential of the vaccines against other non-O157 EHEC
Water-pipe smoke condensate increases the internalization of Mycobacterium Bovis of type II alveolar epithelial cells (A549)
Background: Tuberculosis (TB) is a major global health problem, and there is an association between tobacco smoke and TB. Water pipe smoking has become an increasing problem not only in Middle Eastern countries but also globally because users consider it as safer than cigarettes. The presence of high levels of toxic substances in water-pipe smoke may be a predisposing factor that enhances the incidence of pulmonary disorders. For example, uncontrolled macropinocytosis in alveolar epithelial cells following exposure to water-pipe smoke may predispose subjects to pulmonary infection. Here, we studied the effects of water-pipe condense (WPC) on the internalization of Mycobacterium Bovis BCG by macropinocytosis in the alveolar epithelial cell line A549. Methods: A549 cells were exposed to WPC (4 mg/ml) for 24, 48, 72 and 96 h. Cell viability was studied using the methyl thiazolyldipenyl-tetrazolium bromide (MTT) reduction assay and proliferation by bromodeoxyUridine (BrdU) incorporation. Cells were exposed to FITC-Dextran (1 mg/ml) (as a control) and FITC-BCG (MOI = 10) for 20 min at 37 ° Cbeforecellswere collected and the uptake of BCG-FITC determined by flow cytometry. Similar experiments were performed at 4 ° Casacontrol . The Rho-associated protein kinase (ROCK) inhibitor Y-27632 (1 μ M) was used to assess the mechanism by which WPC enhanced BCG uptake. Results: WPC (4 mg/ml) increased the uptake of BCG-FITC after 72 (1.3 ± 0.1 fold, p < 0.05) and 96 (1.4 ± 0.05 fold, p < 0.05) hours. No effect on BCG-FITC uptake was observed at 24 or 48 h. WPC also significantly increased the uptake of FITC-Dextran (2.9 ± 0.3 fold, p < 0.05) after 24 h. WPC significantly decreased cell viability after 24 (84 ± 2%, p < 0.05), 48 (78±, 3%, p < 0.05), 72 (64 ± 2%, p < 0.05) and 96 h (45 ± 2%, p < 0.05). Y-27632 completely attenuated the increased uptake of BCG by WPC. Cell proliferation showed a decreasing trend in a time-dependent manner with WPC exposure. Conclusion: WPC exposure increased epithelial cell endocytosis activity and death as well as enhancing their capacity for macropinocytosis. Our in vitro data indicates possible harmful effects of WPC on the ability of lung epithelial cells to phagocytose mycobacterium
Innate activation of human primary epithelial cells broadens the host response to Mycobacterium tuberculosis in the airways
Early events in the human airways determining whether exposure to Mycobacterium tuberculosis (Mtb) results in acquisition of infection are poorly understood. Epithelial cells are the dominant cell type in the lungs, but little is known about their role in tuberculosis. We hypothesised that human primary airway epithelial cells are part of the first line of defense against Mtb-infection and contribute to the protective host response in the human respiratory tract. We modelled these early airway-interactions with human primary bronchial epithelial cells (PBECs) and alveolar macrophages. By combining in vitro infection and transwell co-culture models with a global transcriptomic approach, we identified PBECs to be inert to direct Mtb-infection, yet to be potent responders within an Mtb-activated immune network, mediated by IL1β and type I interferon (IFN). Activation of PBECs by Mtb-infected alveolar macrophages and monocytes increased expression of known and novel antimycobacterial peptides, defensins and S100-family members and epithelial-myeloid interactions further shaped the immunological environment during Mtb-infection by promoting neutrophil influx. This is the first in depth analysis of the primary epithelial response to infection and offers new insights into their emerging role in tuberculosis through complementing and amplifying responses to Mtb
Human TRAV1-2-negative MR1-restricted T cells detect S-pyogenes and alternatives to MAIT riboflavin-based antigens
Mucosal-associated invariant T (MAIT) cells are thought to detect microbial antigens presented by the HLA-Ib molecule MR1 through the exclusive use of a TRAV1-2-containing TCRα. Here we use MR1 tetramer staining and ex vivo analysis with mycobacteria-infected MR1-deficient cells to demonstrate the presence of functional human MR1-restricted T cells that lack TRAV1-2. We characterize an MR1-restricted clone that expresses the TRAV12-2 TCRα, which lacks residues previously shown to be critical for MR1-antigen recognition. In contrast to TRAV1-2(+) MAIT cells, this TRAV12-2-expressing clone displays a distinct pattern of microbial recognition by detecting infection with the riboflavin auxotroph Streptococcus pyogenes. As known MAIT antigens are derived from riboflavin metabolites, this suggests that TRAV12-2(+) clone recognizes unique antigens. Thus, MR1-restricted T cells can discriminate between microbes in a TCR-dependent manner. We postulate that additional MR1-restricted T-cell subsets may play a unique role in defence against infection by broadening the recognition of microbial metabolites
A polymorphism in human MR1 is associated with mRNA expression and susceptibility to tuberculosis
The MR1 antigen-presenting system is conserved among mammals and enables T cells to recognize small molecules produced by bacterial pathogens, including Mycobacterium tuberculosis (M.tb). However, it is not known if MR1-mediated antigen presentation is important for protective immunity against mycobacterial disease. We hypothesized that genetic control of MR1 expression correlates with clinical outcomes of tuberculosis infection. We performed an MR1 candidate gene association study and identified an intronic SNP (rs1052632) that was significantly associated with susceptibility to tuberculosis in a discovery and validation cohort of Vietnamese adults with tuberculosis. Stratification by site of disease revealed that rs1052632 genotype GG was strongly associated with the development of meningeal tuberculosis (OR=2.99; 95%CI 1.64-5.43; p=0.00006). Among patients with meningeal disease, absence of the G allele was associated with an increased risk of death (HR=3.86; 95%CI 1.49-9.98; p=0.005). Variant annotation tools using public databases indicate that rs1052632 is strongly associated with MR1 gene expression in lymphoblastoid cells (p=0.004) and is located within a transcriptional enhancer in epithelial keratinocytes. These data support a role for MR1 in the pathogenesis of human tuberculosis by revealing that rs1052632 is associated with MR1 gene expression and susceptibility to tuberculosis in Vietnam