28 research outputs found

    Changes in Cardiac Substrate Transporters and Metabolic Proteins Mirror the Metabolic Shift in Patients with Aortic Stenosis

    Get PDF
    In the hypertrophied human heart, fatty acid metabolism is decreased and glucose utilisation is increased. We hypothesized that the sarcolemmal and mitochondrial proteins involved in these key metabolic pathways would mirror these changes, providing a mechanism to account for the modified metabolic flux measured in the human heart. Echocardiography was performed to assess in vivo hypertrophy and aortic valve impairment in patients with aortic stenosis (n = 18). Cardiac biopsies were obtained during valve replacement surgery, and used for western blotting to measure metabolic protein levels. Protein levels of the predominant fatty acid transporter, fatty acid translocase (FAT/CD36) correlated negatively with levels of the glucose transporters, GLUT1 and GLUT4. The decrease in FAT/CD36 was accompanied by decreases in the fatty acid binding proteins, FABPpm and H-FABP, the β-oxidation protein medium chain acyl-coenzyme A dehydrogenase, the Krebs cycle protein α-ketoglutarate dehydrogenase and the oxidative phosphorylation protein ATP synthase. FAT/CD36 and complex I of the electron transport chain were downregulated, whereas the glucose transporter GLUT4 was upregulated with increasing left ventricular mass index, a measure of cardiac hypertrophy. In conclusion, coordinated downregulation of sequential steps involved in fatty acid and oxidative metabolism occur in the human heart, accompanied by upregulation of the glucose transporters. The profile of the substrate transporters and metabolic proteins mirror the metabolic shift from fatty acid to glucose utilisation that occurs in vivo in the human heart

    Increased Expression of Fatty-Acid and Calcium Metabolism Genes in Failing Human Heart

    Get PDF
    Heart failure (HF) involves alterations in metabolism, but little is known about cardiomyopathy-(CM)-specific or diabetes-independent alterations in gene expression of proteins involved in fatty-acid (FA) uptake and oxidation or in calcium-(Ca(2+))-handling in the human heart.RT-qPCR was used to quantify mRNA expression and immunoblotting to confirm protein expression in left-ventricular myocardium from patients with HF (n = 36) without diabetes mellitus of ischaemic (ICM, n = 16) or dilated (DCM, n = 20) cardiomyopathy aetiology, and non-diseased donors (CTL, n = 6).Significant increases in mRNA of genes regulating FA uptake (CD36) and intracellular transport (Heart-FA-Binding Protein (HFABP)) were observed in HF patients vs CTL. Significance was maintained in DCM and confirmed at protein level, but not in ICM. mRNA was higher in DCM than ICM for peroxisome-proliferator-activated-receptor-alpha (PPARA), PPAR-gamma coactivator-1-alpha (PGC1A) and CD36, and confirmed at the protein level for PPARA and CD36. Transcript and protein expression of Ca(2+)-handling genes (Two-Pore-Channel 1 (TPCN1), Two-Pore-Channel 2 (TPCN2), and Inositol 1,4,5-triphosphate Receptor type-1 (IP3R1)) increased in HF patients relative to CTL. Increases remained significant for TPCN2 in all groups but for TPCN1 only in DCM. There were correlations between FA metabolism and Ca(2+)-handling genes expression. In ICM there were six correlations, all distinct from those found in CTL. In DCM there were also six (all also different from those found in CTL): three were common to and three distinct from ICM.DCM-specific increases were found in expression of several genes that regulate FA metabolism, which might help in the design of aetiology-specific metabolic therapies in HF. Ca(2+)-handling genes TPCN1 and TPCN2 also showed increased expression in HF, while HF- and CM-specific positive correlations were found among several FA and Ca(2+)-handling genes

    Lipid Transfer Protein allergy in the United Kingdom; characterisation and comparison with a matched Italian cohort

    Get PDF
    BACKGROUND: Although pollen-related food allergy occurs in all European populations, Lipid Transfer Protein (LTP) allergy is considered to manifests mainly in Mediterranean countries. We aimed to characterise adults presenting with LTP allergy in a Northern European country. METHOD: The clinical history and sensitisation patterns of subjects born and residing in the United Kingdom (UK), with a prior diagnosis of LTP allergy and sensitisation to the peach LTP allergen Pru p 3, were compared to UK subjects with pollen food syndrome (PFS). The sensitisation patterns were also evaluated against a matched cohort of Italian subjects diagnosed with LTP allergy. RESULTS: None of the 15 UK PFS subjects had a positive SPT to LTP-enriched peach reagent, compared to 91% of the 35 UK LTP subjects. The UK LTP cohort were also more likely to have positive skin prick tests to barley, tomato and cashew nut and sensitisation to the LTP allergens in peach, walnut, mugwort and plane tree These sensitisation patterns to individual allergens were not significantly different from those obtained from the Italian LTP subjects, with significant correlations between Pru p 3 and the LTP allergens in peanuts, walnuts, plane tree and mugwort in both groups. CONCLUSION: Native UK subjects with LTP allergy are not dissimilar to those with LTP allergy in Southern Europe. Testing to LTP-enriched peach SPT reagent and/or LTP allergens in peach, walnut, mugwort and plane tree may enhance diagnostic accuracy

    Transformation of waterborne hybrid polymer particles into films: Morphology development and modeling

    No full text
    Films cast from multiphase polymer particles have the potential to combine the properties of their components synergistically. The properties of the film depend on the hybrid polymer architecture and the film morphology. However, how the polymer microstructure and particle morphology are transformed during film formation to determine the film morphology is not well understood. Here, using waterborne alkyd-acrylic nanocomposite particles in a case study, it was found that phase migration leading to the formation of aggregates occurred during film formation. A coarse-grained Monte Carlo model was developed to account for the effects of polymer microstructure and particle morphology on the morphology of the film. The model was validated by comparing its predictions with the observed effects, and then used to explore combinations of polymer microstructure and particle morphology not attainable with the system used as a case study. Significantly, the compatibility of the phases was found to have a greater influence than the morphology of the particles in determining the film structure

    PR-10, NsLTP, 2S-albumin, DC-8 and vicilin from chickpea (Cicer arietinum) display IgE-reactivity and likely contribute to cross-reactivity with legume foods

    No full text
    Background: Chickpea (Cicer arietinum) has been reported to cause IgE-mediated hypersensitivity reactions. However, chickpea allergens are poorly characterized. Objective: Molecular cloning, recombinant expression and immunological characterization of potential allergens (PR10, nsLTP, 2S Albumin, Vicilin, DC-8) from chickpea, with homology to allergens from other sources. Methods: Protein extract from boiled and raw chickpeas was applied to one- and two-dimensional gel-electrophoresis and immunoblotting using sera from chickpea allergic patients. IgE-reactive spots were subjected to mass spectrometric analysis to verify amino acid (AA) sequences of potential allergens. Additionally, known PR-10, 2S Albumin and nsLTP from chickpea were included in the study. Chickpea proteins were expressed as recombinant non-fusion proteins in E. coli, and subsequently purified by two-step chromatography. The purity, structural and sequence integrity was analyzed by SDS-PAGE, CD-spectroscopy, and MS analysis. Serum samples from chickpea allergic patients were investigated for IgE-reactivity with chickpea extract and purified proteins. Results: Patients showed a multiple and heterogeneous IgE-sensitization profile to raw and boiled chickpeas, indicating an individual divers reactivity pattern. In the extract of boiled chickpeas Vicilin and a DC-8 protein were identified as potential allergens using a serum pool of chickpea allergic patients. All proteins displayed sufficient purity, intact secondary structure and showed IgE-binding using sera from chickpea allergic patients. Notably, the panel of selected target allergens did not resemble the IgE-reactivity to chickpea extract. DC-8, a late embryogenesis abundant (LEA) protein, for the first time was identified as a new class of proteins, with the potential to act as an allergen. Evidence for cross-reactivity between chickpea proteins, PR-10 and other legumes has been shown. Conclusion: Until now, no proteins are identified, playing a predominant role in chickpea allergy. As chickpea allergic patients show a heterogeneous, multi sensitization pattern, many proteins seem to be involved, like Vicilin and the LEA protein, and likely yet unidentified allergens. Although the frequency of sensitization to recombinant PR10, 2S-Albumin and nsLTP from chickpea is low in the used patient collective, the potential risk of IgE cross-reactivity in patients sensitized to homologous proteins from legumes needs to be considered
    corecore