29 research outputs found

    The selectivity, voltage-dependence and acid sensitivity of the tandem pore potassium channel TASK-1 : contributions of the pore domains

    Get PDF
    We have investigated the contribution to ionic selectivity of residues in the selectivity filter and pore helices of the P1 and P2 domains in the acid sensitive potassium channel TASK-1. We used site directed mutagenesis and electrophysiological studies, assisted by structural models built through computational methods. We have measured selectivity in channels expressed in Xenopus oocytes, using voltage clamp to measure shifts in reversal potential and current amplitudes when Rb+ or Na+ replaced extracellular K+. Both P1 and P2 contribute to selectivity, and most mutations, including mutation of residues in the triplets GYG and GFG in P1 and P2, made channels nonselective. We interpret the effects of these—and of other mutations—in terms of the way the pore is likely to be stabilised structurally. We show also that residues in the outer pore mouth contribute to selectivity in TASK-1. Mutations resulting in loss of selectivity (e.g. I94S, G95A) were associated with slowing of the response of channels to depolarisation. More important physiologically, pH sensitivity is also lost or altered by such mutations. Mutations that retained selectivity (e.g. I94L, I94V) also retained their response to acidification. It is likely that responses both to voltage and pH changes involve gating at the selectivity filter

    Migratory Pathways and Connectivity in Asian Houbara Bustards: Evidence from 15 Years of Satellite Tracking

    Get PDF
    Information on migratory pathways and connectivity is essential to understanding population dynamics and structure of migrant species. Our manuscript uses a unique dataset, the fruit of 103 individual Asian houbara bustards captured on their breeding grounds in Central Asia over 15 years and equipped with satellite transmitters, to provide a better understanding of migratory pathways and connectivity; such information is critical to the implementation of biologically sound conservation measures in migrant species. At the scale of the distribution range we find substantial migratory connectivity, with a clear separation of migration pathways and wintering areas between western and eastern migrants. Within eastern migrants, we also describe a pattern of segregation on the wintering grounds. But at the local level connectivity is weak: birds breeding within the limits of our study areas were often found several hundreds of kilometres apart during winter. Although houbara wintering in Arabia are known to originate from Central Asia, out of all the birds captured and tracked here not one wintered on the Arabian Peninsula. This is very likely the result of decades of unregulated off-take and severe habitat degradation in this area. At a time when conservation measures are being implemented to safeguard the long-term future of this species, this study provides critical data on the spatial structuring of populations

    Reproductive constraints influence habitat accessibility, segregation, and preference of sympatric albatross species

    Full text link

    Central place foraging by breeding Cook's petrel Pterodroma cookii: foraging duration reflects range, diet and chick meal mass

    No full text
    Pelagic seabirds are central place foragers during breeding and variation in foraging trip duration and range reflect differences in diet and chick provisioning, through the exploitation of divergent habitats of varying productivity. We tested whether these relationships hold in small procellarriids by equipping chick-rearing Cook's petrel Pterodroma cookii (200 g) with geolocation-immersion loggers, conducting isotope analysis of blood and measuring chick meal mass following foraging trips of varying duration. Cook's petrel tracked during chick rearing from Little Barrier Island (LBI) and Codfish Island (CDF), New Zealand had larger maximum ranges during longer foraging trips. Blood nitrogen isotope signatures (delta(15)N) of adults were significantly higher after foraging trips of longer duration, but not of greater maximum range. There was no significant relationship between blood carbon isotope signatures (delta(13)C) and foraging trip characteristics. Proportion of time spent on the sea surface and the mass of the meal brought back to chicks were consistently greater for Cook's petrel with larger maximum ranges, which in the case of birds from CDF coincided with productive subtropical convergence zone habitats. As predicted, trip duration reflected divergent foraging behaviours in Cook's petrel during breeding. We suggest that the availability of different prey is a key factor governing at-sea distributions and dietary composition of this species
    corecore