46 research outputs found

    Gene Suppression of Mouse Testis In Vivo Using Small Interfering RNA Derived from Plasmid Vectors

    Get PDF
    We evaluated whether inhibiting gene expression by small interfering RNA (siRNA) can be used for an in vivo model using a germ cell-specific gene (Tex101) as a model target in mouse testis. We generated plasmid-based expression vectors of siRNA targeting the Tex101 gene and transfected them into postnatal day 10 mouse testes by in vivo electroporation. After optimizing the electroporation conditions using a vector transfected into the mouse testis, a combination of high- and low-voltage pulses showed excellent transfection efficiency for the vectors with minimal tissue damage, but gene suppression was transient. Gene suppression by in vivo electroporation may be helpful as an alternative approach when designing experiments to unravel the basic role of testicular molecules

    Immune Modulation by Telomerase-Specific Oncolytic Adenovirus Synergistically Enhances Antitumor Efficacy with Anti-PD1 Antibody

    Get PDF
    The clinical benefit of monotherapy involving immune checkpoint inhibitors (ICIs) such as anti-programmed death-1 antibody (PD-1 Ab) is limited to small populations. We previously developed a telomerase-specific oncolytic adenovirus, Telomelysin (OBP-301), the safety of which was confirmed in a phase I clinical study. Here, we examined the potential of OBP-502, an OBP-301 variant, as an agent for inducing immunogenic cell death (ICD) and synergistically enhancing the efficacy of OBP-502 with PD-1 Ab using CT26 murine colon cancer and PAN02 murine pancreatic cancer cell lines. OBP-502 induced the release of ICD molecules such as adenosine triphosphate (ATP) and high-mobility group box protein 1 (HMGB1) from CT26 and PAN02 cells, leading to recruitment of CD8-positive lymphocytes and inhibition of Foxp3-positive lymphocyte infiltration into tumors. Combination therapy involving OBP-502 intratumoral administration and PD-1 Ab systemic administration significantly suppressed the growth of not only OBP-502-treated tumors but also tumors not treated with OBP-502 (so-called abscopal effect) in CT26 and PAN02 bilateral subcutaneous tumor models, in which active recruitment of CD8-positve lymphocytes was observed even in tumors not treated with OBP-502. This combined efficacy was similar to that observed in a CT26 rectal orthotopic tumor model involving liver metastases. In conclusion, telomerase-specific oncolytic adenoviruses are promising candidates for combined therapies with ICIs

    Molecular dynamics study on DNA damage by tritium disintegration

    Get PDF
    Using molecular dynamics (MD) simulation, we simulate the structural change of a telomeric DNA by β-decay of substituted tritium to helium-3. The configuration of the telomeric DNA is obtained by removing TRF2 protein from the TRF2-Dbd-DNA complex (Protein Data Bank ID is 3SJM). We assume that hydrogens (H) of guanines in the telomeric DNA are replaced to helium-3. Since this replacement of the H atoms to the 3He atoms changes the charge distribution significantly, the charge distribution used in the MD simulation for the modified guanine is obtained by the density functional theory calculations. We adopt, as the MD simulation, nanoscale molecular dynamics code with CHARMM36 force field using Langevin thermostat and Nosé–Hoover Langevin piston to control the temperature and pressure of the system, respectively. Moreover, changing both the number of replaced guanine N and the temperature of the system T, we calculate the root mean square deviation RMSD to quantify the dependence of the durability of the telomeric DNA on the β-decays. From the MD simulation, it is found that as N or T becomes larger, the RMSD of the DNA becomes also larger. Namely, it denotes that as the intensity of the β-decays becomes larger or as the temperature is increased, the DNA structure becomes more fragile

    Free-Energy Analysis of Peptide Binding in Lipid Membrane Using All-Atom Molecular Dynamics Simulation Combined with Theory of Solutions

    No full text
    All-atom molecular dynamics (MD) simulations are performed to examine the stabilities of a variety of binding configurations of alamethicin, a 20-amino-acid amphipathic peptide, in the bilayers of 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) and 1,2-dimyristoyl-<i>sn</i>-glycero-3-phosphatidylcholine (DMPC). The binding free energy of alamethicin is calculated through a combination of MD simulation and the energy-representation theory of solutions, and it is seen that the transmembrane configuration is stable in both membranes. A surface-bound state is also found to be stable due to the balance between the attractive and repulsive interactions of the peptide with lipid and water, and the key role of water is pointed out for the stability in the interfacial region. A difference between the POPC and DMPC systems is noted when the polar C-terminal domain is buried in the hydrophobic region of the membrane. In POPC, the peptide is unfavorably located with that configuration due to the loss of electrostatic interaction between the peptide and lipid
    corecore