153 research outputs found

    Body Shape and Life Style of the Extinct Balearic Dormouse Hypnomys (Rodentia, Gliridae): New Evidence from the Study of Associated Skeletons

    Get PDF
    Hypnomys is a genus of Gliridae (Rodentia) that occurred in the Balearic Islands until Late Holocene. Recent finding of a complete skeleton of the chronospecies H. morpheus (Late Pleistocene-Early Holocene) and two articulated skeletons of H. cf. onicensis (Late Pliocene) allowed the inference of body size and the calculation of several postcranial indexes. We also performed a Factorial Discriminant Analysis (FDA) in order to evaluate locomotory behaviour and body shape of the taxa. Using allometric models based on skull and tooth measurements, we calculated a body weight between 173 and 284 g for H. morpheus, and direct measurements of articulated skeletons yielded a Head and Body Length (HBL) of 179 mm and a Total Body Length of 295 mm for this species. In addition to the generally higher robustness of postcranial bones already recorded by previous authors, H. morpheus, similar to Canariomys tamarani, another extinct island species, displayed elongated zygopodium bones of the limbs and a wider distal humerus and femur than in an extant related taxon, Eliomys quercinus. Indexes indicated that Hypnomys was more terrestrial and had greater fossorial abilities than E. quercinus. This was also corroborated by a Discriminant Analysis, although no clear additional inference of locomotory abilities could be calculated

    Costs and effectiveness of alternative dog vaccination strategies to improve dog population coverage in rural and urban settings during a rabies outbreak.

    Get PDF
    Dog-rabies elimination programs have typically relied upon parenteral vaccination at central-point locations; however, dog-ownership practices, accessibility to hard-to-reach sub-populations, resource limitations, and logistics may impact a country's ability to reach the 70% coverage goal recommended by the World Organization for Animal Health (OIE) and World Health Organization (WHO). Here we report the cost-effectiveness of different dog-vaccination strategies during a dog-rabies outbreak in urban and peri-urban sections of Croix-des-Bouquets commune of the West Department, Haiti, in 2016. Three strategies, mobile static point (MSP), mobile static point with capture-vaccinate-release (MSP?+?CVR), and door-to-door vaccination with oral vaccination (DDV?+?ORV), were applied at five randomly assigned sites and assessed for free-roaming dog vaccination coverage and total population coverage. A total of 7065 dogs were vaccinated against rabies during the vaccination campaign. Overall, free-roaming dog vaccination coverage was estimated at 52% (47%-56%) for MSP, 53% (47%-60%) for DDV?+?ORV, and 65% (61%-69%) for MSP?+?CVR (differences with MSP and DDV?+?ORV significant at p?<?0.01). Total dog vaccination coverage was 33% (95% CI: 26%-43%) for MSP, 49% (95% CI: 40%-61%) for MSP?+?CVR and 78% (77%-80%) for DDV?+?ORV (differences significant at p?<?0.001). Overall, the least expensive campaign was MSP, with an estimated cost of about 2039perday(2039 per day (4078 total), and the most expensive was DDV?+?ORV with a cost of 3246perday(3246 per day (6492 total). Despite the relative high cost of an ORV bait, combining DDV and ORV was the most cost-effective strategy in our study (1.97pervaccinateddog),largelyduetoincreasedefficiencyofthevaccinatorstotargetlessaccessibledogs.Costspervaccinateddogwere1.97 per vaccinated dog), largely due to increased efficiency of the vaccinators to target less accessible dogs. Costs per vaccinated dog were 2.20 for MSP and $2.28 for MSP?+?CVR. We hope the results from this study will support the design and implementation of effective dog vaccination campaigns to achieve the goal of eliminating dog-mediated human rabies deaths by 2030

    Test methods and influential factors for analysis of bonding between bituminous pavement layers

    Get PDF
    The durability and maintenance of pavements depend on several factors. One of the most influential is the bond between layers. This bond is responsible for ensuring all layers behave as a single entity, reducing cracks and deformation of the pavement. Several methods, developed by different authors over the past 30 years, to measure bonding between layers are analyzed in this paper. Different research lines are discussed, concluding that the most influential variables are: tack coat type, dosage, mixture type, surface characteristics, temperature, and emulsion breaking time. In order to reach the highest bond strength values, the following factors should be considered: high values of surface macro-texture, low temperatures, the use of heat-adhesive emulsion, a dosage from 300 to 450 g/m2 of residual bitumen and the compaction after emulsion break. Moreover, a non-destructive test method to assess tack coat dosage on site is proposed

    Climate change and habitat fragmentation drive the occurrence of Borrelia burgdorferi, the agent of Lyme disease, at the northeastern limit of its distribution

    Get PDF
    Lyme borreliosis is rapidly emerging in Canada, and climate change is likely a key driver of the northern spread of the disease in North America. We used field and modeling approaches to predict the risk of occurrence of Borrelia burgdorferi, the bacteria causing Lyme disease in North America. We combined climatic and landscape variables to model the current and future (2050) potential distribution of the black-legged tick and the white-footed mouse at the northeastern range limit of Lyme disease and estimated a risk index for B. burgdorferi from these distributions. The risk index was mostly constrained by the distribution of the white-footed mouse, driven by winter climatic conditions. The next factor contributing to the risk index was the distribution of the black-legged tick, estimated from the temperature. Landscape variables such as forest habitat and connectivity contributed little to the risk index. We predict a further northern expansion of B. burgdorferi of approximately 250-500 km by 2050 - a rate of 3.5-11 km per year - and identify areas of rapid rise in the risk of occurrence of B. burgdorferi. Our results will improve understanding of the spread of Lyme disease and inform management strategies at the most northern limit of its distribution.Julie A. Simon, Robby R. Marrotte, Nathalie Desrosiers, Jessica Fiset, Jorge Gaitan, Andrew Gonzalez, Jules K. Koffi, Francois-Joseph Lapointe, Patrick A. Leighton, Lindsay R. Lindsay, Travis Logan, Francois Milord, Nicholas H. Ogden, Anita Rogic, Emilie Roy-Dufresne, Daniel Suter, Nathalie Tessier, and Virginie Millie

    Phylogeographic Analysis Elucidates the Influence of the Ice Ages on the Disjunct Distribution of Relict Dragonflies in Asia

    Get PDF
    Unusual biogeographic patterns of closely related groups reflect events in the past, and molecular analyses can help to elucidate these events. While ample research on the origin of disjunct distributions of different organism groups in the Western Paleartic has been conducted, such studies are rare for Eastern Palearctic organisms. In this paper we present a phylogeographic analysis of the disjunct distribution pattern of the extant species of the strongly cool-adapted Epiophlebia dragonflies from Asia. We investigated sequences of the usually more conserved 18 S rDNA and 28 S rDNA genes and the more variable sequences of ITS1, ITS2 and CO2 of all three currently recognised Epiophlebia species and of a sample of other odonatan species. In all genes investigated the degrees of similarity between species of Epiophlebia are very high and resemble those otherwise found between different populations of the same species in Odonata. This indicates that substantial gene transfer between these populations occurred in the comparatively recent past. Our analyses imply a wide distribution of the ancestor of extant Epiophlebia in Southeast Asia during the last ice age, when suitable habitats were more common. During the following warming phase, its range contracted, resulting in the current disjunct distribution. Given the strong sensitivity of these species to climatic parameters, the current trend to increasing global temperatures will further reduce acceptable habitats and seriously threaten the existences of these last representatives of an ancient group of Odonata

    Mapping tenascin-C interaction with toll-like receptor 4 reveals a new subset of endogenous inflammatory triggers

    Get PDF
    Pattern recognition underpins innate immunity; the accurate identification of danger, including infection, injury, or tumor, is key to an appropriately targeted immune response. Pathogen detection is increasingly well defined mechanistically, but the discrimination of endogenous inflammatory triggers remains unclear. Tenascin-C, a matrix protein induced upon tissue damage and expressed by tumors, activates toll-like receptor 4 (TLR4)-mediated sterile inflammation. Here we map three sites within tenascin-C that directly and cooperatively interact with TLR4. We also identify a conserved inflammatory epitope in related proteins from diverse families, and demonstrate that its presence targets molecules for TLR detection, while its absence enables escape of innate immune surveillance. These data reveal a unique molecular code that defines endogenous proteins as inflammatory stimuli by marking them for recognition by TLRs

    Global warming and Bergmann’s rule: do central European passerines adjust their body size to rising temperatures?

    Get PDF
    Recent climate change has caused diverse ecological responses in plants and animals. However, relatively little is known about homeothermic animals’ ability to adapt to changing temperature regimes through changes in body size, in accordance with Bergmann’s rule. We used fluctuations in mean annual temperatures in south-west Germany since 1972 in order to look for direct links between temperature and two aspects of body size: body mass and flight feather length. Data from regionally born juveniles of 12 passerine bird species were analysed. Body mass and feather length varied significantly among years in eight and nine species, respectively. Typically the inter-annual changes in morphology were complexly non-linear, as was inter-annual variation in temperature. For six (body mass) and seven species (feather length), these inter-annual fluctuations were significantly correlated with temperature fluctuations. However, negative correlations consistent with Bergmann’s rule were only found for five species, either for body mass or feather length. In several of the species for which body mass and feather length was significantly associated with temperature, morphological responses were better predicted by temperature data that were smoothed across multiple years than by the actual mean breeding season temperatures of the year of birth. This was found in five species for body mass and three species for feather length. These results suggest that changes in body size may not merely be the result of phenotypic plasticity but may hint at genetically based microevolutionary adaptations

    Isolation of alveolar epithelial type II progenitor cells from adult human lungs

    Get PDF
    Resident stem/progenitor cells in the lung are important for tissue homeostasis and repair. However, a progenitor population for alveolar type II (ATII) cells in adult human lungs has not been identified. The aim of this study is to isolate progenitor cells from adult human lungs with the ability to differentiate into ATII cells. We isolated colony-forming cells that had the capability for self-renewal and the potential to generate ATII cells in vitro. These undifferentiated progenitor cells expressed surface markers of mesenchymal stem cells (MSCs) and surfactant proteins associated with ATII cells, such as CD90 and pro-surfactant protein-C (pro-SP-C), respectively. Microarray analyses indicated that transcripts associated with lung development were enriched in the pro-SP-C+/CD90+ cells compared with bone marrow-MSCs. Furthermore, pathological evaluation indicated that pro-SP-C and CD90 double-positive cells were present within alveolar walls in normal lungs, and significantly increased in ATII cell hyperplasias contributing to alveolar epithelial repair in damaged lungs. Our findings demonstrated that adult human lungs contain a progenitor population for ATII cells. This study is a first step toward better understanding of stem cell biology in adult human lung alveoli
    corecore