165 research outputs found

    Evidence for geometry-dependent universal fluctuations of the Kardar-Parisi-Zhang interfaces in liquid-crystal turbulence

    Full text link
    We provide a comprehensive report on scale-invariant fluctuations of growing interfaces in liquid-crystal turbulence, for which we recently found evidence that they belong to the Kardar-Parisi-Zhang (KPZ) universality class for 1+1 dimensions [Phys. Rev. Lett. 104, 230601 (2010); Sci. Rep. 1, 34 (2011)]. Here we investigate both circular and flat interfaces and report their statistics in detail. First we demonstrate that their fluctuations show not only the KPZ scaling exponents but beyond: they asymptotically share even the precise forms of the distribution function and the spatial correlation function in common with solvable models of the KPZ class, demonstrating also an intimate relation to random matrix theory. We then determine other statistical properties for which no exact theoretical predictions were made, in particular the temporal correlation function and the persistence probabilities. Experimental results on finite-time effects and extreme-value statistics are also presented. Throughout the paper, emphasis is put on how the universal statistical properties depend on the global geometry of the interfaces, i.e., whether the interfaces are circular or flat. We thereby corroborate the powerful yet geometry-dependent universality of the KPZ class, which governs growing interfaces driven out of equilibrium.Comment: 31 pages, 21 figures, 1 table; references updated (v2,v3); Fig.19 updated & minor changes in text (v3); final version (v4); J. Stat. Phys. Online First (2012

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events

    Get PDF
    We present a measurement of the top quark pair ttbar production cross section in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1} of data collected by the DO detector at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), large missing transverse energy, and at least four jets, and extract the ttbar content of the sample based on the kinematic characteristics of the events. For a top quark mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1} (syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging

    Get PDF
    We present a measurement of the top quark pair (ttˉt\bar{t}) production cross section (σttˉ\sigma_{t\bar{t}}) in ppˉp\bar{p} collisions at s=1.96\sqrt{s}=1.96 TeV using 230 pb1^{-1} of data collected by the D0 experiment at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), missing transverse energy, and jets in the final state. We employ lifetime-based b-jet identification techniques to further enhance the ttˉt\bar{t} purity of the selected sample. For a top quark mass of 175 GeV, we measure σttˉ=8.61.5+1.6(stat.+syst.)±0.6(lumi.)\sigma_{t\bar{t}}=8.6^{+1.6}_{-1.5}(stat.+syst.)\pm 0.6(lumi.) pb, in agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let

    Measurement of the Isolated Photon Cross Section in p-pbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    The cross section for the inclusive production of isolated photons has been measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV and have pseudorapidity |eta|<0.9. The cross section is compared with the results from two next-to-leading order perturbative QCD calculations. The theoretical predictions agree with the measurement within uncertainties.Comment: 7 pages, 5 figures, submitted to Phys.Lett.

    Identifying forest ecosystem regions for agricultural use and conservation

    Get PDF
    ABSTRACT Balancing agricultural needs with the need to protect biodiverse environments presents a challenge to forestry management. An imbalance in resource production and ecosystem regulation often leads to degradation or deforestation such as when excessive cultivation damages forest biodiversity. Lack of information on geospatial biodiversity may hamper forest ecosystems. In particular, this may be an issue in areas where there is a strong need to reassign land to food production. It is essential to identify and protect those parts of the forest that are key to its preservation. This paper presents a strategy for choosing suitable areas for agricultural management based on a geospatial variation of Shannon's vegetation diversity index (SHDI). This index offers a method for selecting areas with low levels of biodiversity and carbon stock accumulation ability, thereby reducing the negative environmental impact of converting forest land to agricultural use. The natural forest ecosystem of the controversial 1997 Ex-Mega Rice Project (EMRP) in Indonesia is used as an example. Results showed that the geospatial pattern of biodiversity can be accurately derived using kriging analysis and then effectively applied to the delineation of agricultural production areas using an ecological threshold of SHDI. A prediction model that integrates a number of species and families and average annual rainfall was developed by principal component regression (PCR) to obtain a geospatial distribution map of biodiversity. Species richness was found to be an appropriate indicator of SHDI and able to assist in the identification of areas for agricultural use and natural forest management

    Search for single top quark production in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    We present a search for electroweak production of single top quarks in the s-channel and t-channel using neural networks for signal-background separation. We have analyzed 230 pb1^{-1} of data collected with the D0 detector at the Fermilab Tevatron Collider at a center-of-mass energy of 1.96 TeV and find no evidence for a single top quark signal. The resulting 95% confidence level upper limits on the single top quark production cross sections are 6.4 pb in the s-channel and 5.0 pb in the t-channel.Comment: 9 pages, 4 figure

    Measurement of B(t->Wb)/B(t->Wq) at sqrt(s) = 1.96 TeV

    Full text link
    We present the measurement of R = B(t->Wb)/B(t->Wq) in ppbar collisions at sqrt(s) = 1.96 TeV, using 230 pb-1 of data collected by the DO experiment at the Fermilab Tevatron Collider. We fit simultaneously R and the number of selected top quark pairs (ttbar), to the number of identified b-quark jets in events with one electron or one muon, three or more jets, and high transverse energy imbalance. To improve sensitivity, kinematical properties of events with no identified b-quark jets are included in the fit. We measure R = 1.03 +0.19 -0.17 (stat+syst), in good agreement with the standard model. We set lower limits of R > 0.61 and |V_tb| > 0.78 at 95% confidence level.Comment: 7 pages, 1 figure submitted to Phys. Rev. Let

    Search for scalar leptoquarks in the acoplanar jet topology in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    A search for leptoquarks has been performed in 310 pb-1 of data from ppbar collisions at a center-of-mass energy of 1.96 TeV, collected by the D0 detector at the Fermilab Tevatron Collider. The topology analyzed consists of acoplanar jets with missing transverse energy. The data show good agreement with standard model expectations, and a lower mass limit of 136 GeV has been set at the 95% C.L. for a scalar leptoquark decaying exclusively into a quark and a neutrino.Comment: Minor changes in v2 to match the published version, 8 pages, 5 figure
    corecore