33 research outputs found

    Meeting reports: Research on Coupled Human and Natural Systems (CHANS): Approach, Challenges, and Strategies

    Get PDF
    Understanding the complexity of human–nature interactions is central to the quest for both human well-being and global sustainability. To build an understanding of these interactions, scientists, planners, resource managers, policymakers, and communities increasingly are collaborating across wide-ranging disciplines and knowledge domains. Scientists and others are generating new integrated knowledge on top of their requisite specialized knowledge to understand complex systems in order to solve pressing environmental and social problems (e.g., Carpenter et al. 2009). One approach to this sort of integration, bringing together detailed knowledge of various disciplines (e.g., social, economic, biological, and geophysical), has become known as the study of Coupled Human and Natural Systems, or CHANS (Liu et al. 2007a, b). In 2007 a formal standing program in Dynamics of Coupled Natural and Human Systems was created by the U.S. National Science Foundation. Recently, the program supported the launch of an International Network of Research on Coupled Human and Natural Systems (CHANS-Net.org). A major kick-off event of the network was a symposium on Complexity in Human–Nature Interactions across Landscapes, which brought together leading CHANS scientists at the 2009 meeting of the U.S. Regional Association of the International Association for Landscape Ecology in Snowbird, Utah. The symposium highlighted original and innovative research emphasizing reciprocal interactions between human and natural systems at multiple spatial, temporal, and organizational scales. The presentations can be found at ‹http://chans- net.org/Symposium_2009.aspx›. The symposium was accompanied by a workshop on Challenges and Opportunities in CHANS Research. This article provides an overview of the CHANS approach, outlines the primary challenges facing the CHANS research community, and discusses potential strategies to meet these challenges, based upon the presentations and discussions among participants at the Snowbird meeting

    Improving Both the Performance Benefits and Speed of Optimization Phase Sequence Searches

    No full text
    The issues of compiler optimization phase ordering and selection present important challenges to compiler developers in several domains, and in particular to the speed, code size, power, and costconstrained domain of embedded systems. Different sequences of optimization phases have been observed to provide the best performance for different applications. Compiler writers and embedded systems developers have recently addressed this problem by conducting iterative empirical searches using machine-learning based heuristic algorithms in an attempt to find the phase sequences that are most effective for each application. Such searches are generally performed at the program level, although a few studies have been performed at the function level. The finer granularity of functionlevel searches has the potential to provide greater overall performance benefits, but only at the cost of slower searches caused by a greater number of performance evaluations that often require expensive program simulations. In this paper, we evaluate the performance benefits and search time increases of functionlevel approaches as compared to their program-level counterparts. We, then, present a novel search algorithm that conducts distinct function-level searches simultaneously, but requires only a single program simulation for evaluating the performance of potentially unique sequences for each function. Thus, our new hybrid search strategy provides the enhanced performance benefits of functionlevel searches with a search-time cost that is comparable to or less than program-level searches

    Management of chronic empyema with unexpandable lung in poor surgical risk patients using an empyema tube

    No full text
    Objectives: High preoperative risk precludes decortication and other surgical interventions in some patients with chronic empyema. We manage such patients by converting the chest tube into an "empyema tube," cutting the tube near the skin and securing the end with a sterile clip to allow for open pleural drainage. The patient is followed serially, and the tube gradually withdrawn based on radiological resolution and amount of drainage. Methods: Between 2010 and 2014, patients with chronic empyema and unexpandable lung, deemed high-risk surgical candidates, had staged chest tube removal, and were included for the study. The volume of fluid drained, culture results, duration of drainage, functional status, and comorbidities were recorded. Measurements and Results: Eight patients qualified. All had resolution of infection. The tube was removed after an average of 73.6 ± 49.73 (95% confidence interval [CI]) days. The mean duration of antibiotic treatment was 5.37 ± 1.04 (95% CI) weeks. None required surgery or experienced complications from an empyema tube. Conclusion: A strategy of empyema tube drainage with staged removal is an option in appropriately selected patients with chronic empyema, unexpandable lung, and poor surgical candidacy

    Meeting reports: Research on Coupled Human and Natural Systems (CHANS): Approach, Challenges, and Strategies

    Get PDF
    Understanding the complexity of human–nature interactions is central to the quest for both human well-being and global sustainability. To build an understanding of these interactions, scientists, planners, resource managers, policymakers, and communities increasingly are collaborating across wide-ranging disciplines and knowledge domains. Scientists and others are generating new integrated knowledge on top of their requisite specialized knowledge to understand complex systems in order to solve pressing environmental and social problems (e.g., Carpenter et al. 2009). One approach to this sort of integration, bringing together detailed knowledge of various disciplines (e.g., social, economic, biological, and geophysical), has become known as the study of Coupled Human and Natural Systems, or CHANS (Liu et al. 2007a, b). In 2007 a formal standing program in Dynamics of Coupled Natural and Human Systems was created by the U.S. National Science Foundation. Recently, the program supported the launch of an International Network of Research on Coupled Human and Natural Systems (CHANS-Net.org). A major kick-off event of the network was a symposium on Complexity in Human–Nature Interactions across Landscapes, which brought together leading CHANS scientists at the 2009 meeting of the U.S. Regional Association of the International Association for Landscape Ecology in Snowbird, Utah. The symposium highlighted original and innovative research emphasizing reciprocal interactions between human and natural systems at multiple spatial, temporal, and organizational scales. The presentations can be found at ‹http://chans- net.org/Symposium_2009.aspx›. The symposium was accompanied by a workshop on Challenges and Opportunities in CHANS Research. This article provides an overview of the CHANS approach, outlines the primary challenges facing the CHANS research community, and discusses potential strategies to meet these challenges, based upon the presentations and discussions among participants at the Snowbird meeting

    Research on Coupled Human and Natural Systems (CHANS): Approach, Challenges, and Strategies

    Get PDF
    Understanding the complexity of human–nature interactions is central to the quest for both human well-being and global sustainability. To build an understanding of these interactions, scientists, planners, resource managers, policy makers, and communities increasingly are collaborating across wide-ranging disciplines and knowledge domains. Scientists and others are generating new integrated knowledge on top of their requisite specialized knowledge to understand complex systems in order to solve pressing environmental and social problems (e.g., Carpenter et al. 2009). One approach to this sort of integration, bringing together detailed knowledge of various disciplines (e.g., social, economic, biological, and geophysical), has become known as the study of Coupled Human and Natural Systems, or CHANS (Liu et al. 2007a, b). In 2007 a formal standing program in Dynamics of Coupled Natural and Human Systems was created by the U.S. National Science Foundation. Recently, the program supported the launch of an International Network of Research on Coupled Human and Natural Systems (CHANS-Net.org). A major kick-off event of the network was a symposium on Complexity in Human–Nature Interactions across Landscapes, which brought together leading CHANS scientists at the 2009 meeting of the U.S. Regional Association of the International Association for Landscape Ecology in Snowbird, Utah. The symposium highlighted original and innovative research emphasizing reciprocal interactions between human and natural systems at multiple spatial, temporal, and organizational scales. The presentations can be found at: http://chansnet. org/Symposium_2009.aspx. The symposium was accompanied by a workshop on Challenges and Opportunities in CHANS Research. This article provides an overview of the CHANS approach, outlines the primary challenges facing the CHANS research community, and discusses potential strategies to meet these challenges, based upon the presentations and discussions among participants at the Snowbird meeting
    corecore