31 research outputs found
Human Gyrovirus Apoptin shows a similar subcellular distribution pattern and apoptosis induction as the chicken anaemia virus derived VP3/Apoptin
The chicken anaemia virus-derived protein Apoptin/VP3 (CAV-Apoptin) has the important ability to induce tumour-selective apoptosis in a variety of human cancer cells. Recently the first human Gyrovirus (HGyV) was isolated from a human skin swab. It shows significant structural and organisational resemblance to CAV and encodes a homologue of CAV-Apoptin/VP3. Using overlapping primers we constructed a synthetic human Gyrovirus Apoptin (HGyV-Apoptin) fused to green fluorescent protein in order to compare its apoptotic function in various human cancer cell lines to CAV-Apoptin. HGyV-Apoptin displayed a similar subcellular expression pattern as observed for CAV-Apoptin, marked by translocation to the nucleus of cancer cells, although it is predominantly located in the cytosol of normal human cells. Furthermore, expression of either HGyV-Apoptin or CAV-Apoptin in several cancer cell lines triggered apoptosis at comparable levels. These findings indicate a potential anti-cancer role for HGyV-Apoptin
Transcriptomic Profiling of Virus-Host Cell Interactions following Chicken Anaemia Virus (CAV) Infection in an In Vivo Model.
Chicken Anaemia Virus (CAV) is an economically important virus that targets lymphoid and erythroblastoid progenitor cells leading to immunosuppression. This study aimed to investigate the interplay between viral infection and the host's immune response to better understand the pathways that lead to CAV-induced immunosuppression. To mimic vertical transmission of CAV in the absence of maternally-derived antibody, day-old chicks were infected and their responses measured at various time-points post-infection by qRT-PCR and gene expression microarrays. The kinetics of mRNA expression levels of signature cytokines of innate and adaptive immune responses were determined by qRT-PCR. The global gene expression profiles of mock-infected (control) and CAV-infected chickens at 14 dpi were also compared using a chicken immune-related 5K microarray. Although in the thymus there was evidence of induction of an innate immune response following CAV infection, this was limited in magnitude. There was little evidence of a Th1 adaptive immune response in any lymphoid tissue, as would normally be expected in response to viral infection. Most cytokines associated with Th1, Th2 or Treg subsets were down-regulated, except IL-2, IL-13, IL-10 and IFNγ, which were all up-regulated in thymus and bone marrow. From the microarray studies, genes that exhibited significant (greater than 1.5-fold, false discovery rate <0.05) changes in expression in thymus and bone marrow on CAV infection were mainly associated with T-cell receptor signalling, immune response, transcriptional regulation, intracellular signalling and regulation of apoptosis. Expression levels of a number of adaptor proteins, such as src-like adaptor protein (SLA), a negative regulator of T-cell receptor signalling and the transcription factor Special AT-rich Binding Protein 1 (SATB1), were significantly down-regulated by CAV infection, suggesting potential roles for these genes as regulators of viral infection or cell defence. These results extend our understanding of CAV-induced immunosuppression and suggest a global immune dysregulation following CAV infection
An untargeted multi-technique metabolomics approach to studying intracellular metabolites of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin
<p>Abstract</p> <p>Background</p> <p><it>In vitro </it>cell systems together with omics methods represent promising alternatives to conventional animal models for toxicity testing. Transcriptomic and proteomic approaches have been widely applied <it>in vitro </it>but relatively few studies have used metabolomics. Therefore, the goal of the present study was to develop an untargeted methodology for performing reproducible metabolomics on <it>in vitro </it>systems. The human liver cell line HepG2, and the well-known hepatotoxic and non-genotoxic carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), were used as the <it>in vitro </it>model system and model toxicant, respectively.</p> <p>Results</p> <p>The study focused on the analysis of intracellular metabolites using NMR, LC-MS and GC-MS, with emphasis on the reproducibility and repeatability of the data. State of the art pre-processing and alignment tools and multivariate statistics were used to detect significantly altered levels of metabolites after exposing HepG2 cells to TCDD. Several metabolites identified using databases, literature and LC-nanomate-Orbitrap analysis were affected by the treatment. The observed changes in metabolite levels are discussed in relation to the reported effects of TCDD.</p> <p>Conclusions</p> <p>Untargeted profiling of the polar and apolar metabolites of <it>in vitro </it>cultured HepG2 cells is a valid approach to studying the effects of TCDD on the cell metabolome. The approach described in this research demonstrates that highly reproducible experiments and correct normalization of the datasets are essential for obtaining reliable results. The effects of TCDD on HepG2 cells reported herein are in agreement with previous studies and serve to validate the procedures used in the present work.</p
Atrophy of primary lymphoid organs induced by Marek's disease virus during early infection is associated with increased apoptosis, inhibition of cell proliferation and a severe B-lymphopenia
Marek's disease is a multi-faceted highly contagious disease affecting chickens caused by the Marek's disease alphaherpesvirus (MDV). MDV early infection induces a transient immunosuppression, which is associated with thymus and bursa of Fabricius atrophy. Little is known about the cellular processes involved in primary lymphoid organ atrophy. Here, by in situ TUNEL assay, we demonstrate that MDV infection results in a high level of apoptosis in the thymus and bursa of Fabricius, which is concomitant to the MDV lytic cycle. Interestingly, we observed that in the thymus most of the MDV infected cells at 6 days post-infection (dpi) were apoptotic, whereas in the bursa of Fabricius most of the apoptotic cells were uninfected suggesting that MDV triggers apoptosis by two different modes in these two primary lymphoid organs. In addition, a high decrease of cell proliferation was observed from 6 to 14 dpi in the bursa of Fabricius follicles, and not in the thymus. Finally, with an adapted absolute blood lymphocyte count, we demonstrate a major B-lymphopenia during the two 1st weeks of infection, and propose this method as a potent non-invasive tool to diagnose MDV bursa of Fabricius infection and atrophy. Our results demonstrate that the thymus and bursa of Fabricius atrophies are related to different cell mechanisms, with different temporalities, that affect infected and uninfected cells