25 research outputs found

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    The quest for the solar g modes

    Full text link
    Solar gravity modes (or g modes) -- oscillations of the solar interior for which buoyancy acts as the restoring force -- have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well observed acoustic modes (or p modes). The high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this paper, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made -- from both data and data-analysis perspectives -- to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie

    Advances in modelling of biomimetic fluid flow at different scales

    Get PDF
    The biomimetic flow at different scales has been discussed at length. The need of looking into the biological surfaces and morphologies and both geometrical and physical similarities to imitate the technological products and processes has been emphasized. The complex fluid flow and heat transfer problems, the fluid-interface and the physics involved at multiscale and macro-, meso-, micro- and nano-scales have been discussed. The flow and heat transfer simulation is done by various CFD solvers including Navier-Stokes and energy equations, lattice Boltzmann method and molecular dynamics method. Combined continuum-molecular dynamics method is also reviewed

    Electrostatically driven synthetic microjet arrays as a propulsion method for micro flight

    Full text link
    A propulsion system based on acoustic streaming generated by Helmholtz resonators is presented. High frequency (>60 kHz) electrostatically driven micromachined Helmholtz resonators constitute the basic unit of the system. Microjets produced at the exit of these resonators can be combined to form a distributed propulsion system. A high yield (>85%) fabrication process is introduced for fabrication of individual as well as arrays of resonators. The fabrication results for ten different designs are presented. About 1000 resonators of similar design cover the surface of a 4-in. wafer, effectively converting it to a distributed propulsion system. A number of characterization methods such as monitoring the harmonics of the drive current, laser interferometry, hot-wire anemometry, acoustic spectrum measurement and video particle imaging are used to determine the structural and fluidic behavior of different resonator designs. Collapse and recovery times of the diaphragm in the electrostatic actuator of the resonator are characterized and reduced to less than 10 Όs by optimizing the perforation design. The occurrence of acoustic streaming in the micron-scale is verified via video particle imaging. The jet streams produced with pulse drive at low frequencies (~1 kHz) are spatially profiled and jet velocities exceeding 1 m/s are measured at the exit of the resonators. It has been verified that the resonance frequencies of the device at 50 and 175 kHz can be closely predicted by modeling.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47854/1/542_2005_Article_600.pd

    Unconventional lift-generating mechanisms in free-flying butterflies.

    No full text
    Flying insects generate forces that are too large to be accounted for by conventional steady-state aerodynamics. To investigate these mechanisms of force generation, we trained red admiral butterflies, Vanessa atalanta, to fly freely to and from artificial flowers in a wind tunnel, and used high-resolution, smoke-wire flow visualizations to obtain qualitative, high-speed digital images of the air flow around their wings. The images show that free-flying butterflies use a variety of unconventional aerodynamic mechanisms to generate force: wake capture, two different types of leading-edge vortex, active and inactive upstrokes, in addition to the use of rotational mechanisms and the Weis-Fogh 'clap-and-fling' mechanism. Free-flying butterflies often used different aerodynamic mechanisms in successive strokes. There seems to be no one 'key' to insect flight, instead insects rely on a wide array of aerodynamic mechanisms to take off, manoeuvre, maintain steady flight, and for landing
    corecore