1,735 research outputs found

    Assembly and alignment of the 4-metre multi-object spectroscopic telescope wide field corrector

    Get PDF
    The 4-metre multi-object spectroscopic telescope (4MOST) is a fiber-fed multi-object spectrograph for the VISTA telescope at the European Southern Observatory (ESO) Paranal Observatory in Chile. The goal of the 4MOST project is to create a general purpose and highly efficient spectroscopic survey facility for astronomers in the 4MOST consortium and the ESO community. The instrument itself will record 2436 simultaneous spectra over a 1/44.2 square deg field of view and consists of an optical wide-field corrector (WFC), a fiber positioner system based on a tilting spine design, and three spectrographs giving both high and low spectral dispersion. The WFC comprises of six lenses grouped into four elements, two of which are cemented doublets that act as an atmospheric dispersion corrector. The first lens element is 0.9 m in diameter while the diameter of the other elements is 0.65 m. For the instrument to meet its science goals, each lens was aligned to be well within 1/4100 μm - a major challenge. This was achieved using contact metrology methods supplemented by pencil beam laser probes. In particular, an off-axis laser beam system has been implemented to test the optics' alignment before and after shipment. This work details the alignment and assembly methods and presents the latest results on the achieved lens positioning and projected performance of the WFC

    Domain analysis of lipoprotein LppQ in Mycoplasma mycoides subsp. mycoides SC

    Get PDF
    The lipoprotein LppQ is the most prominent antigen of Mycoplasma mycoides subsp. mycoides small colony type (SC) during infection of cattle. This pathogen causes contagious bovine pleuropneumonia (CBPP), a devastating disease of considerable socio-economic importance in many countries worldwide. The dominant antigenicity and high specificity for M. mycoides subsp. mycoides SC of lipoprotein LppQ have been exploited for serological diagnosis and for epidemiological investigations of CBPP. Scanning electron microscopy and immunogold labelling were used to provide ultrastructural evidence that LppQ is located to the cell membrane at the outer surface of M. mycoides subsp. mycoides SC. The selectivity and specificity of this method were demonstrated through discriminating localization of extracellular (i.e., in the zone of contact with host cells) vs. integral membrane domains of LppQ. Thus, our findings support the suggestion that the accessible N-terminal domain of LppQ is surface exposed and such surface localization may be implicated in the pathogenesis of CBPP

    Attitudes to antipsychotic drugs and their side effects: a comparison between general practitioners and the general population

    Get PDF
    BACKGROUND: Attitudes towards antipsychotic medication play an important part in the treatment for schizophrenia and related disorders. We aimed measuring general practitioners' attitudes to antipsychotic drugs and their adverse side effects and comparing these with the attitudes of the general population. METHODS: Analysis and comparison of two representative samples, one comprising 100 General Practitioners (GPs), the other 791 individuals randomly selected from the general population. The setting was the German speaking cantons of Switzerland. RESULTS: General practitioners have significantly more positive attitudes towards anti-psychotic drugs than the general public. They reject widespread prejudices about the use of anti-psychotic medication significantly more than the general population. In particular the risk of dependency was assessed as 'low' by GP's (80%), in contrast to only 18% of the general population sample. In no instance did a majority of the GPs advise not tolerating any of the 10 possible adverse effects presented in this study. This is in marked contrast to the general population sample, where a majority recommended discontinuation for movement disorder (63%), strong tremor (59%), risk of dependency (55%) and feelings of unrest (54%). CONCLUSION: As well as effective management of side-effects being a vital aspect of patient and carer education, prescribing doctors need to be aware that their mentally ill patients are likely to be confronted with extremely negative public attitudes towards antipsychotic medication and with strong pressures to stop taking their medication in the event of side-effects

    Nucleocytoplasmic transport: a thermodynamic mechanism

    Full text link
    The nuclear pore supports molecular communication between cytoplasm and nucleus in eukaryotic cells. Selective transport of proteins is mediated by soluble receptors, whose regulation by the small GTPase Ran leads to cargo accumulation in, or depletion from the nucleus, i.e., nuclear import or nuclear export. We consider the operation of this transport system by a combined analytical and experimental approach. Provocative predictions of a simple model were tested using cell-free nuclei reconstituted in Xenopus egg extract, a system well suited to quantitative studies. We found that accumulation capacity is limited, so that introduction of one import cargo leads to egress of another. Clearly, the pore per se does not determine transport directionality. Moreover, different cargo reach a similar ratio of nuclear to cytoplasmic concentration in steady-state. The model shows that this ratio should in fact be independent of the receptor-cargo affinity, though kinetics may be strongly influenced. Numerical conservation of the system components highlights a conflict between the observations and the popular concept of transport cycles. We suggest that chemical partitioning provides a framework to understand the capacity to generate concentration gradients by equilibration of the receptor-cargo intermediary.Comment: in press at HFSP Journal, vol 3 16 text pages, 1 table, 4 figures, plus Supplementary Material include

    Agronomic Management of Indigenous Mycorrhizas

    Get PDF
    Many of the advantages conferred to plants by arbuscular mycorrhiza (AM) are associated to the ability of AM plants to explore a greater volume of soil through the extraradical mycelium. Sieverding (1991) estimates that for each centimetre of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the circumstances. Due to the enhancement of the volume of soil explored and the ability of the extraradical mycelium to absorb and translocate nutrients to the plant, one of the most obvious and important advantages resulting from mycorrhization is the uptake of nutrients. Among of which the ones that have immobilized forms in soil, such as P, assume particular significance. Besides this, many other benefits are recognized for AM plants (Gupta et al, 2000): water stress alleviation (Augé, 2004; Cho et al, 2006), protection from root pathogens (Graham, 2001), tolerance to toxic heavy metals and phytoremediation (Audet and Charest, 2006; Göhre and Paszkowski, 2006), tolerance to adverse conditions such as very high or low temperature, high salinity (Sannazzaro et al, 2006), high or low pH (Yano and Takaki, 2005) or better performance during transplantation shock (Subhan et al, 1998). The extraradical hyphae also stabilize soil aggregates by both enmeshing soil particles (Miller e Jastrow, 1992) and producing a glycoprotein, golmalin, which may act as a glue-like substance to adhere soil particles together (Wright and Upadhyaya, 1998). Despite the ubiquous distribution of mycorrhizal fungi (Smith and Read, 2000) and only a relative specificity between host plants and fungal isolates (McGonigle and Fitter, 1990), the obligate nature of the symbiosis implies the establishment of a plant propagation system, either under greenhouse conditions or in vitro laboratory propagation. These techniques result in high inoculum production costs, which still remains a serious problem since they are not competitive with production costs of phosphorus fertilizer. Even if farmers understand the significance of sustainable agricultural systems, the reduction of phosphorus inputs by using AM fungal inocula alone cannot be justified except, perhaps, in the case of high value crops (Saioto and Marumoto, 2002). Nurseries, high income horticulture farmers and no-agricultural application such as rehabilitation of degraded or devegetated landscapes are examples of areas where the use of commercial inoculum is current. Another serious problem is quality of commercial available products concerning guarantee of phatogene free content, storage conditions, most effective application methods and what types to use. Besides the information provided by suppliers about its inoculum can be deceiving, as from the usually referred total counts, only a fraction may be effective for a particular plant or in specific soil conditions. Gianinazzi and Vosátka (2004) assume that progress should be made towards registration procedures that stimulate the development of the mycorrhizal industry. Some on-farm inoculum production and application methods have been studied, allowing farmers to produce locally adapted isolates and generate a taxonomically diverse inoculum (Mohandas et al, 2004; Douds et al, 2005). However the inocula produced this way are not readily processed for mechanical application to the fields, being an obstacle to the utilization in large scale agriculture, especially row crops, moreover it would represent an additional mechanical operation with the corresponding economic and soil compaction costs. It is well recognized that inoculation of AM fungi has a potential significance in not only sustainable crop production, but also environmental conservation. However, the status quo of inoculation is far from practical technology that can be widely used in the field. Together a further basic understanding of the biology and diversity of AM fungi is needed (Abbott at al, 1995; Saito and Marumoto, 2002). Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species introductions and the potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. Schwartz et al, (2006) recommend that a careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial. Agricultural practices such as crop rotation, tillage, weed control and fertilizer apllication all produce changes in the chemical, physical and biological soil variables and affect the ecological niches available for occupancy by the soil biota, influencing in different ways the symbiosis performance and consequently the inoculum development, shaping changes and upset balance of native populations. The molecular biology tools developed in the latest years have been very important for our perception of these changes, ensuing awareness of management choice implications in AM development. In this context, for extensive farming systems and regarding environmental and economic costs, the identification of agronomic management practices that allow controlled manipulation of the fungal community and capitalization of AM mutualistic effect making use of local inoculum, seem to be a wise option for mycorrhiza promotion and development of sustainable crop production

    Absence of annexin I expression in B-cell non-Hodgkin's lymphomas and cell lines

    Get PDF
    BACKGROUND: Annexin I, one of the 20 members of the annexin family of calcium and phospholipid-binding proteins, has been implicated in diverse biological processes including signal transduction, mediation of apoptosis and immunosuppression. Previous studies have shown increased annexin I expression in pancreatic and breast cancers, while it is absent in prostate and esophageal cancers. RESULTS: Data presented here show that annexin I mRNA and protein are undetectable in 10 out of 12 B-cell lymphoma cell lines examined. Southern blot analysis indicates that the annexin I gene is intact in B-cell lymphoma cell lines. Aberrant methylation was examined as a cause for lack of annexin I expression by treating cells 5-Aza-2-deoxycytidine. Reexpression of annexin I was observed after prolonged treatment with the demethylating agent indicating methylation may be one of the mechanisms of annexin I silencing. Treatment of Raji and OMA-BL-1 cells with lipopolysaccharide, an inflammation inducer, and with hydrogen peroxide, a promoter of oxidative stress, also failed to induce annexin I expression. Annexin I expression was examined in primary lymphoma tissues by immunohistochemistry and presence of annexin I in a subset of normal B-cells and absence of annexin I expression in the lymphoma tissues were observed. These results show that annexin I is expressed in normal B-cells, and its expression is lost in all primary B-cell lymphomas and 10 of 12 B-cell lymphoma cell lines. CONCLUSIONS: Our results suggest that, similar to prostate and esophageal cancers, annexin I may be an endogenous suppressor of cancer development, and loss of annexin I may contribute to B-cell lymphoma development

    Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations

    Get PDF
    Microelectrode arrays (MEA) record extracellular local field potentials of cells adhered to the electrodes. A disadvantage is the limited signal-to-noise ratio. The state-of-the-art background noise level is about 10 mu Vpp. Furthermore, in MEAs low frequency events are filtered out. Here, we quantitatively analyze Au electrode/electrolyte interfaces with impedance spectroscopy and noise measurements. The equivalent circuit is the charge transfer resistance in parallel with a constant phase element that describes the double layer capacitance, in series with a spreading resistance. This equivalent circuit leads to a Maxwell-Wagner relaxation frequency, the value of which is determined as a function of electrode area and molarity of an aqueous KCl electrolyte solution. The electrochemical voltage and current noise is measured as a function of electrode area and frequency and follow unambiguously from the measured impedance. By using large area electrodes the noise floor can be as low as 0.3 mu Vpp. The resulting high sensitivity is demonstrated by the extracellular detection of C6 glioma cell populations. Their minute electrical activity can be clearly detected at a frequency below about 10 Hz, which shows that the methodology can be used to monitor slow cooperative biological signals in cell populations

    A Factor Graph Nested Effects Model To Identify Networks from Genetic Perturbations

    Get PDF
    Complex phenotypes such as the transformation of a normal population of cells into cancerous tissue result from a series of molecular triggers gone awry. We describe a method that searches for a genetic network consistent with expression changes observed under the knock-down of a set of genes that share a common role in the cell, such as a disease phenotype. The method extends the Nested Effects Model of Markowetz et al. (2005) by using a probabilistic factor graph to search for a network representing interactions among these silenced genes. The method also expands the network by attaching new genes at specific downstream points, providing candidates for subsequent perturbations to further characterize the pathway. We investigated an extension provided by the factor graph approach in which the model distinguishes between inhibitory and stimulatory interactions. We found that the extension yielded significant improvements in recovering the structure of simulated and Saccharomyces cerevisae networks. We applied the approach to discover a signaling network among genes involved in a human colon cancer cell invasiveness pathway. The method predicts several genes with new roles in the invasiveness process. We knocked down two genes identified by our approach and found that both knock-downs produce loss of invasive potential in a colon cancer cell line. Nested effects models may be a powerful tool for inferring regulatory connections and genes that operate in normal and disease-related processes
    corecore