3,131 research outputs found

    The oculomotor resonance effect in spatial-numerical mapping.

    Get PDF
    We investigated automatic Spatial-Numerical Association of Response Codes (SNARC) effect in auditory number processing. Two experiments continually measured spatial characteristics of ocular drift at central fixation during and after auditory number presentation. Consistent with the notion of a spatially oriented mental number line, we found spontaneous magnitude-dependent gaze adjustments, both with and without a concurrent saccadic task. This fixation adjustment (1) had a small-number/left-lateralized bias and (2) it was biphasic as it emerged for a short time around the point of lexical access and it received later robust representation around following number onset. This pattern suggests a two-step mechanism of sensorimotor mapping between numbers and space - a first-pass bottom-up activation followed by a top-down and more robust horizontal SNARC. Our results inform theories of number processing as well as simulation-based approaches to cognition by identifying the characteristics of an oculomotor resonance phenomenon

    Ocular drift along the mental number line.

    Get PDF
    We examined the spontaneous association between numbers and space by documenting attention deployment and the time course of associated spatial-numerical mapping with and without overt oculomotor responses. In Experiment 1, participants maintained central fixation while listening to number names. In Experiment 2, they made horizontal target-direct saccades following auditory number presentation. In both experiments, we continuously measured spontaneous ocular drift in horizontal space during and after number presentation. Experiment 2 also measured visual-probe-directed saccades following number presentation. Reliable ocular drift congruent with a horizontal mental number line emerged during and after number presentation in both experiments. Our results provide new evidence for the implicit and automatic nature of the oculomotor resonance effect associated with the horizontal spatial-numerical mapping mechanism

    Jet Trimming

    Get PDF
    Initial state radiation, multiple interactions, and event pileup can contaminate jets and degrade event reconstruction. Here we introduce a procedure, jet trimming, designed to mitigate these sources of contamination in jets initiated by light partons. This procedure is complimentary to existing methods developed for boosted heavy particles. We find that jet trimming can achieve significant improvements in event reconstruction, especially at high energy/luminosity hadron colliders like the LHC.Comment: 20 pages, 11 figures, 3 tables - Minor changes to text/figure

    Attention deployment during memorizing and executing complex instructions.

    Get PDF
    We investigated the mental rehearsal of complex action instructions by recording spontaneous eye movements of healthy adults as they looked at objects on a monitor. Participants heard consecutive instructions, each of the form "move [object] to [location]". Instructions were only to be executed after a go signal, by manipulating all objects successively with a mouse. Participants re-inspected previously mentioned objects already while listening to further instructions. This rehearsal behavior broke down after 4 instructions, coincident with participants' instruction span, as determined from subsequent execution accuracy. These results suggest that spontaneous eye movements while listening to instructions predict their successful execution

    Identifying Boosted Objects with N-subjettiness

    Get PDF
    We introduce a new jet shape -- N-subjettiness -- designed to identify boosted hadronically-decaying objects like electroweak bosons and top quarks. Combined with a jet invariant mass cut, N-subjettiness is an effective discriminating variable for tagging boosted objects and rejecting the background of QCD jets with large invariant mass. In efficiency studies of boosted W bosons and top quarks, we find tagging efficiencies of 30% are achievable with fake rates of 1%. We also consider the discovery potential for new heavy resonances that decay to pairs of boosted objects, and find significant improvements are possible using N-subjettiness. In this way, N-subjettiness combines the advantages of jet shapes with the discriminating power seen in previous jet substructure algorithms.Comment: 26 pages, 26 figures, 2 tables; v2: references added; v3: discussion of results extende

    The mass area of jets

    Get PDF
    We introduce a new characteristic of jets called mass area. It is defined so as to measure the susceptibility of the jet's mass to contamination from soft background. The mass area is a close relative of the recently introduced catchment area of jets. We define it also in two variants: passive and active. As a preparatory step, we generalise the results for passive and active areas of two-particle jets to the case where the two constituent particles have arbitrary transverse momenta. As a main part of our study, we use the mass area to analyse a range of modern jet algorithms acting on simple one and two-particle systems. We find a whole variety of behaviours of passive and active mass areas depending on the algorithm, relative hardness of particles or their separation. We also study mass areas of jets from Monte Carlo simulations as well as give an example of how the concept of mass area can be used to correct jets for contamination from pileup. Our results show that the information provided by the mass area can be very useful in a range of jet-based analyses.Comment: 36 pages, 12 figures; v2: improved quality of two plots, added entry in acknowledgments, nicer form of formulae in appendix A; v3: added section with MC study and pileup correction, version accepted by JHE

    The gravitino coupling to broken gauge theories applied to the MSSM

    Full text link
    We consider gravitino couplings in theories with broken gauge symmetries. In particular, we compute the single gravitino production cross section in W+ W- fusion processes. Despite recent claims to the contrary, we show that this process is always subdominant to gluon fusion processes in the high energy limit. The full calculation is performed numerically; however, we give analytic expressions for the cross section in the supersymmetric and electroweak limits. We also confirm these results with the use of the effective theory of goldstino interactions.Comment: 26 pages, 4 figure
    • …
    corecore