112 research outputs found

    Dissociable effects of 5-HT2C receptor antagonism and genetic inactivation on perseverance and learned non-reward in an egocentric spatial reversal task

    Get PDF
    Cognitive flexibility can be assessed in reversal learning tests, which are sensitive to modulation of 5-HT2C receptor (5-HT2CR) function. Successful performance in these tests depends on at least two dissociable cognitive mechanisms which may separately dissipate associations of previous positive and negative valence. The first is opposed by perseverance and the second by learned non-reward. The current experiments explored the effect of reducing function of the 5-HT2CR on the cognitive mechanisms underlying egocentric reversal learning in the mouse. Experiment 1 used the 5-HT2CR antagonist SB242084 (0.5 mg/kg) in a between-groups serial design and Experiment 2 used 5-HT2CR KO mice in a repeated measures design. Animals initially learned to discriminate between two egocentric turning directions, only one of which was food rewarded (denoted CS+, CS−), in a T- or Y-maze configuration. This was followed by three conditions; (1) Full reversal, where contingencies reversed; (2) Perseverance, where the previous CS+ became CS− and the previous CS− was replaced by a novel CS+; (3) Learned non-reward, where the previous CS− became CS+ and the previous CS+ was replaced by a novel CS-. SB242084 reduced perseverance, observed as a decrease in trials and incorrect responses to criterion, but increased learned non-reward, observed as an increase in trials to criterion. In contrast, 5-HT2CR KO mice showed increased perseverance. 5-HT2CR KO mice also showed retarded egocentric discrimination learning. Neither manipulation of 5-HT2CR function affected performance in the full reversal test. These results are unlikely to be accounted for by increased novelty attraction, as SB242084 failed to affect performance in an unrewarded novelty task. In conclusion, acute 5-HT2CR antagonism and constitutive loss of the 5-HT2CR have opposing effects on perseverance in egocentric reversal learning in mice. It is likely that this difference reflects the broader impact of 5HT2CR loss on the development and maintenance of cognitive function

    Identification of a Key Amino Acid of LuxS Involved in AI-2 Production in Campylobacter jejuni

    Get PDF
    Autoinducer-2 (AI-2) mediated quorum sensing has been associated with the expression of virulence factors in a number of pathogenic organisms and has been demonstrated to play a role in motility and cytolethal distending toxin (cdt) production in Campylobacter jejuni. We have initiated the work to determine the molecular basis of AI-2 synthesis and the biological functions of quorum sensing in C. jejuni. In this work, two naturally occurring variants of C. jejuni 81116 were identified, one producing high-levels of AI-2 while the other is defective in AI-2 synthesis. Sequence analysis revealed a G92D mutation in the luxS gene of the defective variant. Complementation of the AI-2− variant with a plasmid encoded copy of the wild-type luxS gene or reversion of the G92D mutation by site-directed mutagenesis fully restored AI-2 production by the variant. These results indicate that the G92D mutation alone is responsible for the loss of AI-2 activity in C. jejuni. Kinetic analyses showed that the G92D LuxS has a ∼100-fold reduced catalytic activity relative to the wild-type enzyme. Findings from this study identify a previously undescribed amino acid that is essential for AI-2 production by LuxS and provide a unique isogenic pair of naturally occurring variants for us to dissect the functions of AI-2 mediated quorum sensing in Campylobacter

    Predictive modelling of a novel anti-adhesion therapy to combat bacterial colonisation of burn wounds

    Get PDF
    As the development of new classes of antibiotics slows, bacterial resistance to existing antibiotics is becoming an increasing problem. A potential solution is to develop treatment strategies with an alternative mode of action. We consider one such strategy: anti-adhesion therapy. Whereas antibiotics act directly upon bacteria, either killing them or inhibiting their growth, anti-adhesion therapy impedes the binding of bacteria to host cells. This prevents bacteria from deploying their arsenal of virulence mechanisms, while simultaneously rendering them more susceptible to natural and artificial clearance. In this paper, we consider a particular form of anti-adhesion therapy, involving biomimetic multivalent adhesion molecule 7 coupled polystyrene microbeads, which competitively inhibit the binding of bacteria to host cells. We develop a mathematical model, formulated as a system of ordinary differential equations, to describe inhibitor treatment of a Pseudomonas aeruginosa burn wound infection in the rat. Benchmarking our model against in vivo data from an ongoing experimental programme, we use the model to explain bacteria population dynamics and to predict the efficacy of a range of treatment strategies, with the aim of improving treatment outcome. The model consists of two physical compartments: the host cells and the exudate. It is found that, when effective in reducing the bacterial burden, inhibitor treatment operates both by preventing bacteria from binding to the host cells and by reducing the flux of daughter cells from the host cells into the exudate. Our model predicts that inhibitor treatment cannot eliminate the bacterial burden when used in isolation; however, when combined with regular or continuous debridement of the exudate, elimination is theoretically possible. Lastly, we present ways to improve therapeutic efficacy, as predicted by our mathematical model

    Evaluation of HIV protease and nucleoside reverse transcriptase inhibitors on proliferation, necrosis, apoptosis in intestinal epithelial cells and electrolyte and water transport and epithelial barrier function in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protease inhibitors (PI's) and reverse transcriptase drugs are important components of highly active antiretroviral therapy (HAART) for treating human acquired immunodeficiency syndrome (AIDS). Long-term clinical therapeutic efficacy and treatment compliance of these agents have been limited by undesirable side-effects, such as diarrhea. This study aims to investigate the effects of selected antiretroviral agents on intestinal histopathology and function <it>in vivo </it>and on cell proliferation and death <it>in vitro</it>.</p> <p>Methods</p> <p>Selected antiretroviral drugs were given orally over 7 days, to Swiss mice, as follows: 100 mg/kg of nelfinavir (NFV), indinavir (IDV), didanosine (DDI) or 50 mg/kg of zidovudine (AZT). Intestinal permeability measured by lactulose and mannitol assays; net water and electrolyte transport, in perfused intestinal segments; and small intestinal morphology and cell apoptosis were assessed in treated and control mice. <it>In vitro </it>cell proliferation was evaluated using the WST-1 reagent and apoptosis and necrosis by flow cytometry analysis.</p> <p>Results</p> <p>NFV, IDV, AZT and DDI caused significant reductions in duodenal and in jejunal villus length (p < 0.05). IDV and AZT increased crypt depth in the duodenum and AZT increased crypt depth in the jejunum. NFV, AZT and DDI significantly decreased ileal crypt depth. All selected antiretroviral drugs significantly increased net water secretion and electrolyte secretion, except for DDI, which did not alter water or chloride secretion. Additionally, only NFV significantly increased mannitol and lactulose absorption. NFV and IDV caused a significant reduction in cell proliferation <it>in vitro </it>at both 24 h and 48 h. DDI and AZT did not alter cell proliferation. There was a significant increase in apoptosis rates in IEC-6 cells after 24 h with 70 ug/mL of NFV (control: 4.7% vs NFV: 22%) while IDV, AZT and DDI did not show any significant changes in apoptosis compared to the control group. In jejunal sections, IDV and NFV significantly increased the number of TUNEL positive cells.</p> <p>Conclusion</p> <p>The PI's, NFV and IDV, increased cell apoptosis <it>in vivo</it>, water and electrolyte secretion and intestinal permeability and decreased villus length and cell proliferation. NFV was the only drug tested that increased cell apoptosis <it>in vitro</it>. The nucleoside reverse transcriptase inhibitors, AZT and DDI, did not affect cell apoptosis or proliferation. These findings may partly explain the intestinal side-effects associated with PI's.</p

    Functional tissue engineering of ligament healing

    Get PDF
    Ligaments and tendons are dense connective tissues that are important in transmitting forces and facilitate joint articulation in the musculoskeletal system. Their injury frequency is high especially for those that are functional important, like the anterior cruciate ligament (ACL) and medial collateral ligament (MCL) of the knee as well as the glenohumeral ligaments and the rotator cuff tendons of the shoulder. Because the healing responses are different in these ligaments and tendons after injury, the consequences and treatments are tissue- and site-specific. In this review, we will elaborate on the injuries of the knee ligaments as well as using functional tissue engineering (FTE) approaches to improve their healing. Specifically, the ACL of knee has limited capability to heal, and results of non-surgical management of its midsubstance rupture have been poor. Consequently, surgical reconstruction of the ACL is regularly performed to gain knee stability. However, the long-term results are not satisfactory besides the numerous complications accompanied with the surgeries. With the rapid development of FTE, there is a renewed interest in revisiting ACL healing. Approaches such as using growth factors, stem cells and scaffolds have been widely investigated. In this article, the biology of normal and healing ligaments is first reviewed, followed by a discussion on the issues related to the treatment of ACL injuries. Afterwards, current promising FTE methods are presented for the treatment of ligament injuries, including the use of growth factors, gene delivery, and cell therapy with a particular emphasis on the use of ECM bioscaffolds. The challenging areas are listed in the future direction that suggests where collection of energy could be placed in order to restore the injured ligaments and tendons structurally and functionally
    • …
    corecore